1 / 47

Lessons Learned Monitoring the WAN

Explore the automated problem identification, system alerts, and engineering aspects of WAN monitoring. Learn about the PingER and IEPM-BW projects, valuable insights, challenges faced, and improvements made. Discover the extensive active E2E monitoring capabilities in PingER design details.

wittj
Download Presentation

Lessons Learned Monitoring the WAN

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lessons Learned Monitoring the WAN Les Cottrell, SLAC ESnet R&D Advisory Workshop April 23, 2007 Arlington, Virginia Partially funded by DOE and by Internet2

  2. Uses of Measurements • Automated problem identification & trouble shooting: • Alerts for network administrators, e.g. • Outages, baselines, bandwidth changes in time-series, iperf, SNMP • Alerts for systems people • OS/Host metrics • Forecasts for Grid Middleware, e.g. replica manager, data placement • Engineering, planning, SLA (set & verify), expectations • Also (not addressed here): • Security: spot anomalies, intrusion detection • Accounting

  3. WAN History • PingER (1994), IEPM-BW (2001), Netflow • E2E, active, regular, end user view, • all hosts owned by individual sites, • core mainly centrally designed & developed (homogenous), contributions from FNAL, GATech, NIIT (close collaboration) • Why are you monitoring: • network trouble management, planning, auditing/setting SLAs, Grid forecasting are very different though may use same measurements

  4. PingER (1994) • PingER project originally (1995) for measuring network performance for US, Europe & Japanese HEP community - now mainly R&E sites • Extended this century to measure Digital Divide: • Collaboration with ICTP Science Dissemination Unit http://sdu.ictp.it • ICFA/SCIC: http://icfa-scic.web.cern.ch/ICFA-SCIC/ • >120 countries (99% world’s connected population) • >35 monitor sites in 14 countries • Uses ubiquitous ping facility • Monitor 44 sites in S. Asia • Maybe most extensive active E2E monitoring in world

  5. PingER Design Details • PingER Design (1994: no web services or RRD, security not a big thing, etc.) • Simple, no remote software (ping everywhere), no probe development, monitor host install 0.5 day effort for sys-admin • Data centrally gathered, archived, analyzed, so hard jobs (archiving, analysis, viz) do NOT require distribution, only one copy • Database flat ASCII files, rawdata, analyzed data, file/pair/day. Compressed saves factor 6 (100GB) • Data available via web (lot of use, some uses unexpected, often analysis by Excel)

  6. PingER Lessons • Measurement code rewritten twice, once to add extra data, once to document (perldoc) / parameterize / simplify installation • Gathering code (uses LYNX or FTP) pull from archive, no major mods in 10 years • Most of development: for download, analyze data, viz, manage • New ways to use data: jitter, out of order, duplicates, derive throughput, MOS all required study of data then implement and integrate • Dirty data (pathologies not related to network) require filtering or filling before analysis • Had to develop easy make/install download, instructions, FAQ, still new installs require communication: • pre-reqs, getting name registration, getting cron jobs running, getting web server running, unblock, clarify documentation (often non-native English speakers) • Documentation (tutorials, help, FAQs), publicity (brochures, papers, maps, presentations/travel), get funding/proposals • Monitor availability of (developed tools to simplify/automate): • monitor sites (hosts stop working: security blocks, hosts replaced, site forgets), nudge contacts • critical remote sites (beacons), choose new one (automatically updates monitor sites) • Validate/update meta data (name, address, institute, lat/long, contact …) in database (need easy update)

  7. IEPM-BW (2001) • 40 target hosts in 13 countries • Bottlenecks vary from 0.5Mbits/s to 1Gbits/s • Traverse ~ 50 AS’, 15 major Internet providers • 5 targets at PoPs, rest at end sites • Added Sunnyvale for UltraLight • Covers all USATLAS tier 0, 1, 2 sites • Recently Added FZK, QAU • Main author (Connie Logg) retired

  8. IEPM-BW Design Details • IEPM-BW (2001): • More focused (than PingER), fewer sites (e.g. BaBar collaborators), more intense, more probe tools (iperf, thrulay, pathload, traceroute, owamp, bbftp …), more flexibility • Complete code set (measurement, archive, analyze, viz) at each monitoring site. Data distributed. • Needs dedicated host • Remote sites need code installed • Originally executed remote via ssh, still needed code installed • Security, accounts (require training), recovery problems • Major changes with time: • Use servers rather than ssh for remote hosts • Use mysql for configuration data bases rather than require perl scripts • Provide management tools for configuration data etc. • Add/replace probes

  9. IEPM-BW Lessons (1) • Problems & recommendations: • Need right versions of mysql, gnuplot, perl (and modules) installed on hosts • All possible failure modes for probe tools need to be understood and accomodated • Timeout everything, clean up hung processes • Keep logfiles for day or so for debugging • Review how processes run with Netflow (mainly manual) • Scheduling: • don’t run file transfer, iperf, thrulay, pathload at same time on same path • Limit duration and frequency of intensive probes so do not impact network • Host loses disk, upgrades OS, loses DNS, applications upgraded (e.g. gnuplot), IEPM database zapped etc. • Need backup • Have a local host as target for sanity check (e.g. monitoring host based issues) • Monitor monitoring host load (e.g. Ganglia, Nagios…)

  10. IEPM-BW Lessons (2) • Different paths need different probes (performance and interest related) • Experiences with probes (lot of work to understand, analyze & compare): • Owamp vs ping: owamp needs server and accurate time; ping only round trip available everywhere, may be blocked • Traceroute: need to analyze significance of results • Packet pair separation: • Abwe noisy, inaccurate especially on Gbps paths • Pathchirp better, pathload best (most intense approaches iperf), problems at 10Gbps, look at pathneck • TCP: • thrulay more information, more manageable than iperf, • need to keep TCP buffers optimized/updated • File transfer • Disk to disk close to iperf/thrulay • disk measures file/disk system – not network, but end user important • Adding new hosts still not easy

  11. Other Lessons (1) • Traceroute no good for layers 2 &1 • Packet pair surpasses time granularity at 10Gbps • Net admin cannot review thousands of graphs each day: • need event detection, alert notification, and diagnosis assistance • Comparing QoS vs best effort requires adding path reservation • Keeping TCP buffer parameters optimized difficult • Network & configurations not static • Forecasting hard if path is congested, need to account for diurnal etc. variations

  12. Examples of real data Caltech: thrulay • Misconfigured windows • New path • Very noisy • Seasonal effects • Daily & weekly 800 Mbps 0 Nov05 Mar06 UToronto: miperf 250 Mbps 0 Jan06 Nov05 Pathchirp UTDallas • Some are seasonal • Others are not • Events may affect multiple-metrics 120 thrulay Mbps 0 iperf Mar-20-06 Mar-10-06 • Events can be caused by host or site congestion • Few route changes result in bandwidth changes (~20%) • Many significant events are not associated with route changes (~50%)

  13. Netflow et. al. • Switch identifies flow by sce/dst ports, protocol • Cuts record for each flow: • src, dst, ports, protocol, TOS, start, end time • Collect records and analyze • No intrusive traffic, real: traffic, collaborators, applications • No accounts/pwds/certs/keys • No reservations etc • Characterize traffic: top talkers, applications, flow lengths etc. • May be able to use for forecasting for some sites and event detection (also security wants it) • LHC-OPN requires edge routers to provide Netflow data • Internet 2 backbone • http://netflow.internet2.edu/weekly/ • SLAC: • www.slac.stanford.edu/comp/net/slac-netflow/html/SLAC-netflow.html

  14. Netflow limitations • Can be a lot of data to collect each day, need lots cpu • Hundreds of MBytes to GBytes • Use of dynamic ports makes harder to detect app. • GridFTP, bbcp, bbftp can use fixed ports (but may not) • P2P often uses dynamic ports • Discriminate type of flow based on headers (not relying on ports) • Types: bulk data, interactive … • Discriminators: inter-arrival time, length of flow, packet length, volume of flow • Use machine learning/neural nets to cluster flows • E.g. http://www.pam2004.org/papers/166.pdf • Aggregation of parallel flows (needs care, but not difficult)

  15. NG: PerfSONAR • Our future focus (for us 3rd Generation), NSF proposal: • Open source, open community • Both end users (LHC, GATech, SLAC, Delaware) and network providers (ESnet, I2, GEANT, Eu NRENs, Brazil, …), achieve critical mass? • Many developers from multiple fields • Requires from the get go: shared code, documentation, collaboration • Hopefully not as dependent on funding as a single team, so persistent? • Transparent gathering and storage of measurement, both from NRENs and end users • Sharing of information across autonomous domains • Uses standard formats • More comprehensive view • AAA to provide protection for of sensitive data • Reduces debugging time • Access to multiple components of the path • No need to play telephone tag • Currently mainly middleware, needs: • Data mining and viz • Topology also at layers 1 & 2 • Forecasting • Event detection and event diagnosis

  16. Challenges • Probe tools fail at > 1Gbps • Dedicated circuits, QoS, Layers 2 &1 • Impact of new (e.g. TOS NICs) • Auto event detection, alerts, diagnosis • Integrate passive & active • Tie in end systems, file/disk systems, Apps • Sustainability (funding disappears) • Factorise components (measure, archive, analyze) AND tasks • Provide standard, published interfaces • Engage community (multiple developers, users, providers: has its own challenges)

  17. Questions, More information • Comparisons of Active Infrastructures: • www.slac.stanford.edu/grp/scs/net/proposals/infra-mon.html • Some active public measurement infrastructures: • www-iepm.slac.stanford.edu/ • www-iepm.slac.stanford.edu/pinger/ • www.slac.stanford.edu/grp/scs/net/talk06/IEPM-BW%20Deployment.ppt • e2epi.internet2.edu/owamp/ • amp.nlanr.net/ (no longer available) • Monitoring tools • www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html • www.caida.org/tools/ • Google for iperf, thrulay, bwctl, pathload, pathchirp • Event detection • www.slac.stanford.edu/grp/scs/net/papers/noms/noms14224-122705-d.doc

  18. More Slides

  19. Active E2E Monitoring

  20. E.g. Using Active IEPM-BW measurements • Focus on high performance for a few hosts needing to send data to a small number of collaborator sites, e.g. HEP tiered model • Makes regular measurements with probe tools • ping (RTT, connectivity), owamp (1 way delay) traceroute (routes) • pathchirp, pathload (available bandwidth) • iperf (one & multi-stream), thrulay, (achievable throughput) • supports bbftp, bbcp (file transfer applications, not network) • Looking at GridFTP but complex requiring renewing certificates • Choice of probes depends on importance of path, e.g. • For major paths (tier 0, 1 & some 2) use full suite • For tier 3 use just ping and traceroute • Running at major HEP sites: CERN, SLAC, FNAL, BNL, Caltech, Taiwan, SNV to about 40 remote sites • http://www.slac.stanford.edu/comp/net/iepm-bw.slac.stanford.edu/slac_wan_bw_tests.html

  21. IEPM-BW Measurement Topology • 40 target hosts in 13 countries • Bottlenecks vary from 0.5Mbits/s to 1Gbits/s • Traverse ~ 50 AS’, 15 major Internet providers • 5 targets at PoPs, rest at end sites Taiwan • Added Sunnyvale for UltraLight • Adding FZK Karlsruhe TWaren

  22. Top page

  23. Probes: Ping/traceroute • Ping still useful • Is path connected/node reachable? • RTT, jitter, loss • Great for low performance links (e.g. Digital Divide), e.g. AMP (NLANR)/PingER (SLAC) • Nothing to install, but blocking • OWAMP/I2 similar but One Way • But needs server installed at other end and good timers • Now built into IEPM-BW • Traceroute • Needs good visualization (traceanal/SLAC) • No use for dedicated λlayer 1 or 2 • However still want to know topology of paths

  24. Probes: Packet Pair Dispersion Bottleneck Min spacing At bottleneck Spacing preserved On higher speed links Used by pathload, pathchirp, ABwE available bw • Send packets with known separation • See how separation changes due to bottleneck • Can be low network intrusive, e.g. ABwE only 20 packets/direction, also fast < 1 sec • From PAM paper, pathchirp more accurate than ABwE, but • Ten times as long (10s vs 1s) • More network traffic (~factor of 10) • Pathload factor of 10 again more • http://www.pam2005.org/PDF/34310310.pdf • IEPM-BW now supports ABwE, Pathchirp, Pathload

  25. BUT… • Packet pair dispersion relies on accurate timing of inter packet separation • At > 1Gbps this is getting beyond resolution of Unix clocks • AND 10GE NICs are offloading function • Coalescing interrupts, Large Send & Receive Offload, TOE • Need to work with TOE vendors • Turn off offload (Neterion supports multiple channels, can eliminate offload to get more accurate timing in host) • Do timing in NICs • No standards for interfaces • Possibly use packet trains, e.g. pathneck

  26. Achievable Throughput • Use TCP or UDP to send as much data as can memory to memory from source to destination • Tools: iperf (bwctl/I2), netperf, thrulay (from Stas Shalunov/I2), udpmon … • Pseudo file copy: Bbcp also has memory to memory mode to avoid disk/file problems

  27. BUT… • At 10Gbits/s on transatlantic path Slow start takes over 6 seconds • To get 90% of measurement in congestion avoidance need to measure for 1 minute (5.25 GBytes at 7Gbits/s (today’s typical performance) • Needs scheduling to scale, even then … • It’s not disk-to-disk or application-to application • So use bbcp, bbftp, or GridFTP

  28. AND … • For testbeds such as UltraLight, UltraScienceNet etc. have to reserve the path • So the measurement infrastructure needs to add capability to reserve the path (so need API to reservation application) • OSCARS from ESnet developing a web services interface (http://www.es.net/oscars/): • For lightweight have a “persistent” capability • For more intrusive, must reserve just before make measurement

  29. Visualization & Forecasting in Real World

  30. Examples of real data Caltech: thrulay • Misconfigured windows • New path • Very noisy • Seasonal effects • Daily & weekly 800 Mbps 0 Nov05 Mar06 UToronto: miperf 250 Mbps 0 Jan06 Nov05 Pathchirp UTDallas • Some are seasonal • Others are not • Events may affect multiple-metrics 120 thrulay Mbps 0 iperf Mar-20-06 Mar-10-06 • Events can be caused by host or site congestion • Few route changes result in bandwidth changes (~20%) • Many significant events are not associated with route changes (~50%)

  31. Scattter plots & histograms Scatter plots: quickly identify correlations between metrics Thrulay Pathchirp Iperf Thrulay (Mbps) RTT (ms) Pathchirp & iperf (Mbps) Throughput (Mbits/s) Pathchirp Thrulay Histograms: quickly identify variability or multimodality

  32. Changes in network topology (BGP) can result in dramatic changes in performance Hour Samples of traceroute trees generated from the table Los-Nettos (100Mbps) Remote host Snapshot of traceroute summary table Notes: 1. Caltech misrouted via Los-Nettos 100Mbps commercial net 14:00-17:00 2. ESnet/GEANT working on routes from 2:00 to 14:00 3. A previous occurrence went un-noticed for 2 months 4. Next step is to auto detect and notify Drop in performance (From original path: SLAC-CENIC-Caltech to SLAC-Esnet-LosNettos (100Mbps) -Caltech ) Back to original path Dynamic BW capacity (DBC) Changes detected by IEPM-Iperfand AbWE Mbits/s Available BW = (DBC-XT) Cross-traffic (XT) Esnet-LosNettos segment in the path (100 Mbits/s) ABwE measurement one/minute for 24 hours Thurs Oct 9 9:00am to Fri Oct 10 9:01am

  33. On the other hand • Route changes may affect the RTT (in yellow) • Yet have no noticeable effect on on available bandwidth or throughput Available Bandwidth Achievable Throughput Route changes

  34. However… • Elegant graphics are great to understand problems BUT: • Can be thousands of graphs to look at (many site pairs, many devices, many metrics) • Need automated problem recognition AND diagnosis • So developing tools to reliably detect significant, persistent changes in performance • Initially using simple plateau algorithm to detect step changes

  35. Seasonal Effects on events • Change in bandwidth (drops) between 19:00 & 22:00 Pacific Time (7:00-10:00am PK time) • Causes more anomalous events around this time

  36. Forecasting • Over-provisioned paths should have pretty flat time series • Short/local term smoothing • Long term linear trends • Seasonal smoothing • But seasonal trends (diurnal, weekly need to be accounted for) on about 10% of our paths • Use Holt-Winters triple exponential weighted moving averages

  37. Experimental Alerting • Have false positives down to reasonable level (few per week), so sending alerts to developers • Saved in database • Links to traceroutes, event analysis, time-series

  38. Passive • Active monitoring • Pro: regularly spaced data on known paths, can make on-demand • Con: adds data to network, can interfere with real data and measurements • What about Passive?

  39. Netflow et. al. • Switch identifies flow by sce/dst ports, protocol • Cuts record for each flow: • src, dst, ports, protocol, TOS, start, end time • Collect records and analyze • Can be a lot of data to collect each day, needs lot cpu • Hundreds of MBytes to GBytes • No intrusive traffic, real: traffic, collaborators, applications • No accounts/pwds/certs/keys • No reservations etc • Characterize traffic: top talkers, applications, flow lengths etc. • LHC-OPN requires edge routers to provide Netflow data • Internet 2 backbone • http://netflow.internet2.edu/weekly/ • SLAC: • www.slac.stanford.edu/comp/net/slac-netflow/html/SLAC-netflow.html

  40. Typical day’s flows • Very much work in progress • Look at SLAC border • Typical day: • ~ 28K flows/day • ~ 75 sites with > 100KB bulk-data flows • Few hundred flows > GByte • Collect records for several weeks • Filter 40 major collaborator sites, big (> 100KBytes) flows, bulk transport apps/ports (bbcp, bbftp, iperf, thrulay, scp, ftp …) • Divide by remote site, aggregate parallel streams • Look at throughput distribution

  41. Netflow et. al. • Peaks at known capacities and RTTs • RTTs might suggest windows not optimized, peaks at default OS window size(BW=Window/RTT)

  42. How many sites have enough flows? • In May ’05 found 15 sites at SLAC border with > 1440 (1/30 mins) flows • Maybe Enough for time series forecasting for seasonal effects • Three sites (Caltech, BNL, CERN) were actively monitored • Rest were “free” • Only 10% sites have big seasonal effects in active measurement • Remainder need fewer flows • So promising

  43. Mining data for sites • Real application use (bbftp) for 4 months • Gives rough idea of throughput (and confidence) for 14 sites seen from SLAC

  44. Multi months • Bbcp SLAC to Padova Bbcp throughput from SLAC to Padova • Fairly stable with time, large variance • Many non network related factors

  45. Netflow limitations • Use of dynamic ports makes harder to detect app. • GridFTP, bbcp, bbftp can use fixed ports (but may not) • P2P often uses dynamic ports • Discriminate type of flow based on headers (not relying on ports) • Types: bulk data, interactive … • Discriminators: inter-arrival time, length of flow, packet length, volume of flow • Use machine learning/neural nets to cluster flows • E.g. http://www.pam2004.org/papers/166.pdf • Aggregation of parallel flows (needs care, but not difficult) • Can use for giving performance forecast • Unclear if can use for detecting steps in performance

  46. Conclusions • Some tools fail at higher speeds • Throughputs often depend on non-network factors: • Host: interface speeds (DSL, 10Mbps Enet, wireless), loads, resource congestion • Configurations (window sizes, hosts, number of parallel streams) • Applications (disk/file vs mem-to-mem) • Looking at distributions by site, often multi-modal • Predictions may have large standard deviations • Need automated assist to diagnose events

  47. In Progress • Working on Netflow viz (currently at BNL & SLAC) then work with other LHC sites to deploy • Add support for pathneck • Look at other forecasters: e.g. ARMA/ARIMA, maybe Kalman filters, neural nets • Working on diagnosis of events • Multi-metrics, multi-paths • Signed collaborative agreement with Internet2 to collaborate with PerfSONAR • Provide web services access to IEPM data • Provide analysis forecasting and event detection to PerfSONAR data • Use PerfSONAR (e.g. router) data for diagnosis • Provide viz of PerfSONAR route information • Apply to LHCnet • Look at layer 1 & 2 information

More Related