440 likes | 458 Views
高エネルギー加速器セミナー II 2. 放射光 Wed.22,Oct.2006. 2.1 放射光入門. Introduction to Synchrotron Radiation. Contents:. Synchrotron radiation. Properties of synchrotron radiation. Bending magnet. Undulator. Multipole wiggler. Helical undulator. Handling of synchrotron radiation. Reflection optics.
E N D
高エネルギー加速器セミナー II2. 放射光 Wed.22,Oct.2006 2.1 放射光入門 Introduction to Synchrotron Radiation
Contents: • Synchrotron radiation. • Properties of synchrotron radiation. • Bending magnet. • Undulator. • Multipole wiggler. • Helical undulator. • Handling of synchrotron radiation. • Reflection optics. • Vacuum ultraviolet & Soft X-ray. • Hard X-ray.
Transmission of the Earth’s atmosphere for electromagnetic radiationA. Unsöld & B. Baschek: The New Cosmos, 4th ed., Ch.3, Fig.3.1.1.
Auger Electron Energies in eV. D. Attwood: Soft X-Rays and Extreme Ultraviolet Radiation, p.426, Table B.3.
Synchrotron radiation • Light unavailable naturally on earth. • Vacuum ultraviolet (VUV), • Soft X-ray (SX), • Hard X-ray (HX), • 10 eV -100 keV. • Ultimate probe for materials sciences. • Covers every absorption region of every atom. • Wavelengths comparable to interatomic distances. • Generated by high energy accelerators. • Special relativity. • 1 GeV – 8 GeV.
Sources of synchrotron radiation Bending magnet: Undulator: Multipole wiggler:
Spectra of synchrotron radiation at the PF and PF-AR: S. Yamamoto
Spectra of undulator radiation: A short-period narrow-gap undulator.
Basic properties of SR. • High brilliance. • Wide energy coverage. • Continuum. • Bending radiation. • Multipole wiggler radiation. • Tunability. • Undulator radiation. • Polarization. • Helical undulator.
Sources of synchrotron radiation Bending magnet: Undulator: Multipole wiggler:
Lorentz transformation – IIDefinition of the reference frames:
Lorentz transformation – III Transformation matrix: Transformation of contravariant vector: Transformation of covariant vector:
Lorentz transformation – IV Covariant field tensor: Transformation of field:
Lorentz transformation - V In the laboratory frame: In the quasi-rest frame: → (Non-relativistic) electric dipole radiation.
Lorentz transformation – VIElectric dipole radiation: Top view: Side view: Proper system: Laboratory system:
Lorentz transformation – VII Invariants: Transformation of the wavevector: Searchlight / Headlight effect / aberration: Relativistic Doppler shift:
Bending magnet radiation – IICritical energy / critical wavelength From Kim & Attwood:
Spectra of synchrotron radiation at the PF and PF-AR: S. Yamamoto
Bending magnet radiation – IICritical energy / critical wavelength From Kim & Attwood:
Sources of synchrotron radiation Bending magnet: Undulator: Multipole wiggler:
Spectra of undulator radiation: A short-period narrow-gap undulator.
Undulator radiation – I Electron trajectory: Effective Lorentz factor:
Spectra of undulator radiation: A short-period narrow-gap undulator.
Undulator radiation – I Electron trajectory: Effective contraction factor:
Undulator radiation - III Figure 8 motion: Odd harmonics: On axis Even harmonics: Off axis
Spectra of undulator radiation: A short-period narrow-gap undulator.
Sources of synchrotron radiation Bending magnet: Undulator: Multipole wiggler:
Undulator radiation - III Figure 8 motion: Odd harmonics: On axis Even harmonics: Off axis
Generation of circular polarization APPLE-II type polarization undulator: From S. Sasaki et.al.
Handling of SR - IMirrors in the grazing incidence configuration: Reflectance of Au at 278 eV Rs Power reflectance Rp Angle of incidence (deg)
Handling of SR – IIThe VUV and SX regions: Diffraction gratings. Grating monochromator
Handling of SR – IIIThe hard X-ray region: Crystals. Double crystal monochromator
Synchrotron Radiation Facilitiesin the World: • KEK Homepage (研究者向け) • lightsources.org • 各施設のHomepage。 • KEK Homepage (研究者向け) • 研究活動:物質構造科学研究所:放射光科学研究施設PF • PFの運転状況:<PFリング、PF-AR> • リンク: • Google Mapで見る世界の放射光施設 • 世界の放射光リングの運転状況
Relativistic mechanics - II Relativistic velocity: In the rest frame: In the laboratory frame: Energy-momentum:
Relativistic mechanics – III Relativistic force: Covariant construction of the EM force: Lorentz force equation: