1 / 5

Lecture 15– EXAM I on Wed.

Lecture 15– EXAM I on Wed. Exam will cover chapters 1 through 5 NOTE: we did do a few things outside of the text: Binomial Distribution, Poisson Distr. (really 1/N 1/2 ) Thermometry Exam will have 4 questions some with multiple parts.

woods
Download Presentation

Lecture 15– EXAM I on Wed.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 15– EXAM I on Wed. • Exam will cover chapters 1 through 5 • NOTE: we did do a few things outside of the text: • Binomial Distribution, Poisson Distr. (really 1/N1/2) • Thermometry • Exam will have 4 questions some with multiple parts. • Total number of “parts will be on the order of 8 or 9. • Most will be worth 10 points, a few will be worth 5. • You are allowed one formula sheet of your own creation. • I will provide mathematical formulas you may need (e.g. summation result from the zipper problem, Taylor Expansions etc., certain definite integrals).

  2. Lecture 15-- CALM • What would you most like me to discuss tomorrow in preparation for the upcoming exam? proton)? • Density of States (4) • Partition Function/Canonical Ensemble (3) • Examples (3) • Lots of other little things (but not typically requested by >1 person). • Averages: when to use what weights • Macro vs. micro states • What are the KEY concepts

  3. Lecture 15– Review • Chapter 1 • Describing thermodynamic systems • The definition of temperature (also thermometers in chpt. 4). • The Ideal Gas Law • Definition of Heat Capacity and Specific Heat * • The importance of imposed conditions (constant V, constant P, adiabatic etc.) • Adiabatic equation of State for an ideal gas: PVg=const. etc. • Internal Energy of a monatomic ideal gas: E=3/2NkBT • DISTINGUISH between ideal gas results and generalized results. • Chapter 2 • Micro-states and the second law. • Entropy, S=kBln(W) the tendency toward maximum entropy for isolated systems.* • Probability Distributions • (Poisson, Binomial), • computing weighted averages • 1/N1/2 distributions tend to get much sharper when averaged over many more instances or involving many more particles.* • For a reservoir: DS=Q/T* • For a finite system dS= dQ/T*

  4. Lecture 15-- Review • Chapter 3 • b= (dln(W)/dE)N,V = 1/kBT* • Efficiency of heat engines* • Reversibility (DSuniv=0) and the maximum efficiency of heat engines* • Chapter 4 • Sums over states can be recast as integrals over energy weighted by the Density of States • Types of thermometers and the ITS-90 • Chapter 5 : Systems at constant temperature* (i.e. everything here has a *). • Boltzmann Factor prob.~ exp(-E/kBT) • Canonical partition function: Z = Si exp(-Ei/kBT) • <E>=kBT2(dlnZ/dT)N,V • <P>= kBT2(dlnZ/dV)N,T • S= kBln(Z) + <E>/T • ZN=(Z1)N for distinguishable particles ZN=(Z1)N/N! for indistinguishable particles (these are semi-classical results which we will refine later). • For a monatomic ideal gas: • Z1=V/lTh3 where lTh=(h2/2pmkBT)1/2 • S = NkB [ln(V/(NlTh3)) + 5/2] • Extensive vs. Intensive quantities

  5. Examples • Simple model for rotations of diatomic molecule (say CO). A quantum rigid rotator has energy levels EJ = J(J+1)kBQr with degeneracy gJ=2J+1, where J is an integer. Take Qr=2.77K • At what temperature would the same number of such molecules be in each of the first two energy levels? • Derive a closed-form expression for the canonical partition function for such a molecule in the limit where T>>Qr • Suppose we have a solid whose heat capacity is given by the equation: • Cp= 3R (T/Q)3, where Q=300K and R=NAkB=8.314J/K. • How much energy is required to heat this solid from 10K to 300K? • What is the entropy change associated with that heat exchange?

More Related