330 likes | 474 Views
YAGO – A Core of Semantic Knowledge. Fabian M. Suchanek , Gjergji Kasneci, Gerhard Weikum (Max-Planck Institute for Computer Science Saarbrücken/Germany). Overview. ر Motivation ر The Yago ontology ر Content ر Model ر Extension ر Conclusion. The Truth about Elvis.
E N D
YAGO – A Core of Semantic Knowledge Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum (Max-Planck Institute for Computer Science Saarbrücken/Germany) YAGO - A Core of Semantic Knowledge
Overview ر Motivation ر The Yago ontology ر Content ر Model رExtension ر Conclusion YAGO - A Core of Semantic Knowledge
The Truth about Elvis Elvis is alive! YAGO - A Core of Semantic Knowledge
The Truth about Elvis Elvis is alive! He works as an astronaut in NASA's special security program YAGO - A Core of Semantic Knowledge
Usual solution Which NASA astronaut was born when Elvis was born? Yields only rubbish. Reasons: 1. Google participates in the conspiracy 2. Google does not search knowledge, but Web sites YAGO - A Core of Semantic Knowledge
Solution: An ontology astronaut is an ? born born 1935 YAGO - A Core of Semantic Knowledge
Solution: An ontology entity subclass person subclass is a astronaut is a ? born born 1935 means means "Elvis Presley" "The King" YAGO - A Core of Semantic Knowledge
Solution: An ontology entity subclass Classes person subclass Relations is a astronaut is a ? born born Individuals 1935 means means Words "Elvis Presley" "The King" YAGO - A Core of Semantic Knowledge
Where do we get the ontology from? Previous approaches: رAssemble the ontology manually (WordNet, SUMO, GeneOntology) Problems: Usually low coverage (MPI is in none of these) ر Extract the ontology from corpora (e.g. the Web) (KnowItAll, Espresso, Snowball, LEILA) Problem: Usually low accuracy (50%-92%) YAGO - A Core of Semantic Knowledge
Where do we get the ontology from? YAGO approach: Assemble the ontology from Wikipedia (=> good coverage) Use the category system of Wikipedia (=> good accuracy) YAGO - A Core of Semantic Knowledge
Exploiting the Wikipedia category system Elvis Pr born 1935 blah blah blub Elvis (don't read this! Better listen to the talk!) laber fasel suelz. Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Blub, aber blah! Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Insbesondere, blub, texte zu, und so weiter Exploit relational categories Categories: 1935_births YAGO - A Core of Semantic Knowledge
Exploiting the Wikipedia category system American_singer Elvis Pr is a born 1935 blah blah blub Elvis (don't read this! Better listen to the talk!) laber fasel suelz. Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Blub, aber blah! Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Insbesondere, blub, texte zu, und so weiter Exploit relational categories Exploit conceptual categories Categories: American_singers YAGO - A Core of Semantic Knowledge
Exploiting the Wikipedia category system Disputed_article American_singer Elvis Pr is a is a born 1935 blah blah blub Elvis (don't read this! Better listen to the talk!) laber fasel suelz. Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Blub, aber blah! Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Insbesondere, blub, texte zu, und so weiter Exploit relational categories Exploit conceptual categories Categories: Avoid administrational categories Disputed_articles YAGO - A Core of Semantic Knowledge
Exploiting the Wikipedia category system Rock'n_Roll_Music American_singer Elvis Pr is a is a born 1935 blah blah blub Elvis (don't read this! Better listen to the talk!) laber fasel suelz. Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Blub, aber blah! Insbesondere, blub, texte zu, und so weiter blah blah blub Elvis laber fasel suelz. Insbesondere, blub, texte zu, und so weiter Exploit relational categories Exploit conceptual categories Categories: Avoid administrational categories Rock'n_Roll_Music Avoid thematic categories YAGO - A Core of Semantic Knowledge
The Upper Model entity ? person American_singer is a born 1935 YAGO - A Core of Semantic Knowledge
The Upper Model: From Wikipedia? Business Social_group ? People_by_occupation American_singer is a born 1935 YAGO - A Core of Semantic Knowledge
The Upper Model: From WordNet? Person#3 Singer#17 Singer#1 ... American_singer is a born 1935 YAGO - A Core of Semantic Knowledge
The Upper Model: From WordNet? Person#3 Singer#17 Singer#1 Origin#7 ... American_singers_of_Jewish_origin is a born 1935 YAGO - A Core of Semantic Knowledge
The YAGO ontology Person#3 subclass Singer#1 means subclass "singer" American_singer is a born 1935 "Elvis Presley" means YAGO - A Core of Semantic Knowledge
The YAGO ontology: Accuracy YAGO - A Core of Semantic Knowledge
The YAGO ontology: Number of Facts 6,000,000 Ontologies should not be judged purely by the number of facts! This is just an informational overview. 2,000,000 30,000 60,000 200,000 300,000 Yago KnowItAll SUMO WordNet OpenCyc Cyc YAGO - A Core of Semantic Knowledge
The Yago Model: Why binary is not enough singer (Elvis, is_a, singer) (But only from 1953 to 1977) is a (We know this from Wikipedia) YAGO - A Core of Semantic Knowledge
The Yago Model: Why binary is not enough singer #1 (Elvis, is_a, singer) #2 (#1, time, 1953-1977) #3 (#1, source, Wikipedia) time 1953-1977 is a source Wikipedia YAGO - A Core of Semantic Knowledge
The Yago model formally • A YAGO ontology over • a set of relations R • a set of common entities C • a set of fact identifiers I • is a function • I (RCI) R (RIC) #1 (Elvis, is_a, singer) #2 (#1, time, 1953-1977) #3 (#1, source, Wikipedia) • We can talk about • facts (#1, source, Wikipedia) • additional arguments (#1, time, 1953-1977) • relations (time, hasRange, time_interval) YAGO - A Core of Semantic Knowledge
The Yago model: Logical aspects Axioms: (x, is_a, y) (y, subclass, z) => (x, is_a, z) ... person subclass singer is a is a YAGO - A Core of Semantic Knowledge
The Yago model: Logical aspects finite, unique f1, f2, f3, f4, f5, f6, f7, f8, f9, f10 Axioms: (x, is_a, y) (y, subclass, z) => (x, is_a, z) ... derive facts f1, f2, f3, f4, f5 Eliminate facts f1, f2, f3 finite, unique YAGO - A Core of Semantic Knowledge
Extending the Ontology Whom did Elvis marry? X married Y Elvis married Priscilla Priscilla YAGO - A Core of Semantic Knowledge
Extending the Ontology with LEILA subj obj Whom did Elvis marry? X married Y subj obj Elvis, the great rock star, married Priscilla Priscilla YAGO - A Core of Semantic Knowledge
Extending the Ontology Ontology (YAGO) Information Extraction (LEILA) YAGO - A Core of Semantic Knowledge
The Truth about Elvis Which astronaut was born in the same year as Elvis? http://www.mpi-inf.mpg.de/~suchanek/downloads/yago/ Enter your Yago Query: "Elvis Presley" bornInYear $year $astro bornInYear $year $astro isa astronaut 20 results YAGO - A Core of Semantic Knowledge
The Truth about Elvis Which astronaut codenamed "Roger" was born in the same year as Elvis? http://www.mpi-inf.mpg.de/~suchanek/downloads/yago/ Enter your Yago Query: "Elvis Presley" bornInYear $year $astro bornInYear $year "Roger" givenNameOf $astro $astro isa astronaut $astro = Roger_Chaffee YAGO - A Core of Semantic Knowledge
Conclusions • Yago bases on a logically clean model • Yago has an accuracy of around 95% • Yago is 3 times larger than the largest competitor رElvis is alive YAGO - A Core of Semantic Knowledge
Reference For all details, please refer to our technical report "Yago – A Core of Semantic Knowledge" (Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum) available at http://www.mpii.mpg.de/~suchanek BibTex: @TECHREPORT{yagotr, AUTHOR = {Suchanek, Fabian and Kasneci, Gjergji and Weikum, Gerhard}, TITLE = {Yago: A Core of Semantic Knowledge}, TYPE = {Research Report}, INSTITUTION = {Max-Planck-Institut f{\"u}r Informatik}, ADDRESS = {Stuhlsatzenhausweg 85, 66123 Saarbr{\"u}cken, Germany}, NUMBER = {MPI-I-2006-5-006}, YEAR = {2006} } YAGO - A Core of Semantic Knowledge