50 likes | 169 Views
Beginning factorising. x 2 + 6 x + 8 = ( x + 2)( x + 4). x 2 + 2 x 3 = ( x + 3)( x 1). 10 mins: Expand the following brackets and simplify:. 9 x 2 + 27 x + 14. 12 x 2 + 51 x + 45. (3 x + 7)(3 x + 2) (4 x + 5)(3 x +9) (5 x + 4)(3 x – 2) (4 x + 5)(2 x – 4)
E N D
Beginning factorising x2 + 6x + 8 = (x + 2)(x + 4) x2 + 2x 3 = (x + 3)(x 1)
10 mins: Expand the following brackets and simplify: 9x2 + 27x + 14 12x2 + 51x + 45 • (3x + 7)(3x + 2) • (4x + 5)(3x +9) • (5x + 4)(3x – 2) • (4x + 5)(2x – 4) • (7x – 2)(3x + 6) • (5x – 3)(2x – 6) • (8x – 2)(7x – 4) • (3x + 2)2 • (4x – 3)2 • (5x – 4)2 15x2 + 2x 8 8x26x 20 21x2+ 36x 12 10x2 36x+ 18 56x2 46x+ 8 9x2 + 12x+ 4 16x2 24x+ 9 25x2 40x+ 16
5 mins: Complete the following statements. 3 3 • (x + 2)(x + ……) = x2 + 5x + 6 • (x + 1)(x + ……) = x2 + 4x + 3 • (x + 5)(x + ……) = x2 + 9x + 20 • (x + 4)(x + ……) = x2 + 7x + 12 • (x + 2)(x + ……) = x2 + 4x + 4 • (x – 1)(x + ……) = x2 + 4x – 5 • (x – 2)(x + ……) = x2 + 3x – 10 • (x – 4)(x + ……) = x2 – x – 12 • (x – 3)(x – ……) = x2 – 5x + 6 • (x + 3)(x – ……) = x2 – 6x – 27 4 3 2 5 5 3 2 9
5 mins: Complete the following statements. 1 4 1 5 • x2 + 5x + 4 = (x + ……)(x + ……) • x2 + 6x + 5 = (x + ……)(x + ……) • x2 + 7x + 12 = (x + ……)(x + ……) • x2 + 7x + 10 = (x + ……)(x + ……) • x2 + 8x + 15 = (x + ……)(x + ……) • x2 + 11x + 30 = (x + ……)(x + ……) • x2 + x 6 = (x + ……)(x ……) • x2 + 2x 3 = (x + ……)(x ……) • x2x 6 = (x + ……)(x ……) • x2 7x + 12 = (x ……)(x ……) 3 4 2 5 3 5 5 6 3 2 3 1 2 3 3 4