1 / 30

Announcements

Announcements. New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit idea (Thevenin, Norton) Maximum power transfer from a circuit to a load To stop blowing fuses in the lab, note how the breadboards are wired ….

wpurdy
Download Presentation

Announcements

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Announcements New topics: Mesh (loop) method of circuit analysis Superposition method of circuit analysis Equivalent circuit idea (Thevenin, Norton) Maximum power transfer from a circuit to a load To stop blowing fuses in the lab, note how the breadboards are wired … Week 3a

  2. Top view of board Week 3a

  3. Bottom view of board – note which way the wires go Week 3a

  4. Primary Formal Circuit Analysis Methods • MESH ANALYSIS • (“Mesh-Current Method”) • 1) Select M independent mesh currents such that at least one mesh current passes through each branch* • M = #branches - #nodes + 1 • 2) Apply KVL to each mesh, • expressing voltages in terms of • mesh currents • => M equations for • M unknown mesh currents • 3) Solve for mesh currents • => determine node voltages • NODAL ANALYSIS • (“Node-Voltage Method”) • 0) Choose a reference node • 1) Define unknown node voltages • 2) Apply KCL to each unknown • node, expressing current in • terms of the node voltages • => N equations for • N unknown node voltages • 3) Solve for node voltages • => determine branch currents *Simple method for planar circuits A mesh current is not necessarily identified with a branch current. Week 3a

  5. Mesh Analysis: Example #1 • Select M mesh currents. • Apply KVL to each mesh. • Solve for mesh currents. Week 3a

  6. Mesh Analysis with a Current Source ia ib Problem: We cannot write KVL for meshes a and b because there is no way to express the voltage drop across the current source in terms of the mesh currents. Solution: Define a “supermesh” – a mesh which avoids the branch containing the current source. Apply KVL for this supermesh. Week 3a

  7. Mesh Analysis: Example #2 ia ib Eq’n 1: KVL for supermesh Eq’n 2: Constraint due to current source: Week 3a

  8. Mesh Analysis with Dependent Sources • Exactly analogous to Node Analysis • Dependent Voltage Source: (1) Formulate and write KVL mesh eqns. (2) Include and express dependency constraint in terms of mesh currents • Dependent Current Source: (1) Use supermesh. (2) Include and express dependency constraint in terms of mesh currents Week 3a

  9. Superposition Method (Linear Circuits Only) A linear circuit is constructed only of linear elements (linear resistors, linear dependent sources) and independent sources. Principle of Superposition: • In any linear circuit containing multiple independent sources, the current or voltage at any point in the network may be calculated as the algebraic sum of the individual contributions of each source acting alone. Procedure: • Determine contribution due to an independent source • Set all other sources to zero (voltage source  short circuit; current source  open circuit) • Repeat for each independent source • Sum individual contributions to obtain desired voltage or current Week 3a

  10. Superposition Example • Find Vo 4 V 2 W + – + Vo – – + 24 V 4 A 4 W Week 3a

  11. Week 3a

  12. Week 3a

  13. Source Combinations • Voltage sources in series can be replaced by an equivalent voltage source: • Current sources in parallel can be replaced by an equivalent current source: v1 – + – + v1+v2 ≡ – + v2 ≡ i1+i2 i1 i2 Week 3a

  14. Thévenin Equivalent Circuit • Any* linear 2-terminal (1-port) network of indep. voltage sources, indep. current sources, and linear resistors can be replaced by an equivalent circuit consisting of an independent voltage source in series with a resistor without affecting the operation of the rest of the circuit. Thévenin equivalent circuit RTh a a network of sources and resistors + vL – + vL – iL iL ≡ – + VTh RL RL b b “load” resistor Week 3a

  15. I-V Characteristic of Thévenin Equivalent • The I-V characteristic for the series combination of elements is obtained by adding their voltage drops: For a given current i, the voltage drop vabis equal to the sum of the voltages dropped across the source (VTh) and the across the resistor (iRTh) i RTh a v = VTh+ iR v i + vab – – + VTh b I-V characteristic of resistor: v = iR I-V characteristic of voltage source: v = VTh Week 3a

  16. Finding VTh and RTh Only two points are needed to define a line. Choose two convenient points: 1. Open circuit across terminals a,b i = 0,vab≡voc 2. Short circuit across terminals a,b vab= 0, i≡ -isc = -VTh/RTh i i voc R vab Th -isc i i sc + V Th – v = VTh+ iR Week 3a

  17. Calculating a Thévenin Equivalent • Calculate the open-circuit voltage, voc • Calculate the short-circuit current, isc • Note that isc is in the direction of the open-circuit voltage drop across the terminals a,b ! a network of sources and resistors + voc – b a network of sources and resistors isc b Week 3a

  18. Thévenin Equivalent Example Find the Thevenin equivalent with respect to the terminals a,b: Week 3a

  19. Week 3a

  20. Alternative Method of Calculating RTh For a network containing only independent sources and linear resistors: • Set all independent sources to zero voltage source  short circuit current source  open circuit • Find equivalent resistance Req between the terminals by inspection Or, set all independent sources to zero • Apply a test voltage source VTEST • Calculate ITEST network of independent sources and resistors, with each source set to zero Req ITEST network of independent sources and resistors, with each source set to zero – + VTEST Week 3a

  21. RTh Calculation Example #1 Set all independent sources to zero: Week 3a

  22. Comments on Dependent Sources A dependent source establishes a voltage or current whose value depends on the value of a voltage or current at a specified location in the circuit. (device model, used to model behavior of transistors & amplifiers) To specify a dependent source, we must identify: • the controlling voltage or current (must be calculated, in general) • the relationship between the controlling voltage or current and the supplied voltage or current • the reference direction for the supplied voltage or current The relationship between the dependent source and its reference cannot be broken! • Dependent sources cannot be turned off for various purposes (e.g. to find the Thévenin resistance, or in analysis using Superposition). Week 3a

  23. RTh Calculation Example #2 Find the Thevenin equivalent with respect to the terminals a,b: Week 3a

  24. Networks Containing Time-Varying Sources Care must be taken in summing time-varying sources! Example: 10 sin (100t) 1 kW – + + – 20 cos (100t) 1 kW Week 3a

  25. + vL – iL iN RN RL b Norton Equivalent Circuit • Any* linear 2-terminal (1-port) network of indep. voltage sources, indep. current sources, and linear resistors can be replaced by an equivalent circuit consisting of an independent current source in parallel with a resistor without affecting the operation of the rest of the circuit. Norton equivalent circuit a a network of sources and resistors + vL – iL ≡ RL b Week 3a

  26. I-V Characteristic of Norton Equivalent • The I-V characteristic for the parallel combination of elements is obtained by adding their currents: For a given voltage vab, the current i is equal to the sum of the currents in each of the two branches: i a i i = -IN+ Gv + vab – v iN RN b I-V characteristic of resistor: i=Gv I-V characteristic of current source: i = -IN Week 3a

  27. Finding IN and RN =RTh Analogous to calculation of Thevenin Eq. Ckt: 1) Find open-circuit voltage and short-circuit current IN≡ isc = VTh/RTh 2) Or, find short-circuit current and Norton (Thevenin) resistance Week 3a

  28. Finding IN and RN • We can derive the Norton equivalent circuit from a Thévenin equivalent circuit simply by making a source transformation: RTh a a + vL – + vL – iL iL – + vTh iN RL RN RL b b Week 3a

  29. Maximum Power Transfer Theorem Thévenin equivalent circuit • Power absorbed by load resistor: RTh + vL – iL – + VTh RL To find the value of RL for which p is maximum, set to 0: A resistive load receives maximum power from a circuit if the load resistance equals the Thévenin resistance of the circuit. Week 3a

  30. Week 3a

More Related