1 / 74

CHAPTER 2 Time Value of Money

CHAPTER 2 Time Value of Money. Future value Present value Annuities Rates of return Amortization. Time lines. 0. 1. 2. 3. I%. CF 0. CF 1. CF 2. CF 3. Show the timing of cash flows.

wray
Download Presentation

CHAPTER 2 Time Value of Money

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CHAPTER 2Time Value of Money Future value Present value Annuities Rates of return Amortization

  2. Time lines 0 1 2 3 I% CF0 CF1 CF2 CF3 • Show the timing of cash flows. • Tick marks occur at the end of periods, so Time 0 is today; Time 1 is the end of the first period (year, month, etc.) or the beginning of the second period.

  3. $100 lump sum due in 2 years 0 1 2 I% 100 3 year $100 ordinary annuity 0 1 2 3 I% 100 100 100 Drawing time lines

  4. 0 2 3 1 I% -50 100 75 50 Drawing time lines Uneven cash flow stream (mixed stream)

  5. Today Future Compounding and Discounting Single Sums We know that receiving $1 today is worth more than $1 in the future. This is due to opportunity costs. The opportunity cost of receiving $1 in the future is the interestwe could have earned if we had received the $1 sooner.

  6. Today Future ? Today Future ? Compounding VS Discounting • Translate $1 today into its equivalent in the future(compounding). • Translate $1 in the future into its equivalent today(discounting).

  7. Compound Interest and Future Value

  8. Compound Interest and Future Value • 1) Future Value - single sumsIf you deposit $100 in an account earning 6%, how much would you have in the account after 1 year? PV = -100 FV = 106 Mathematical Solution: FV = PV (FVIF i, n ) FV = 100 (FVIF .06, 1 ) (use FVIF table, or) FV = PV (1 + i)n FV = 100 (1.06)1 = $106

  9. Compound Interest and Future Value • 2) Future Value - single sums • If you deposit $100 in an account earning 6%, how much would you have in the account after 5 years? Mathematical Solution: FV = PV (FVIF i, n ) FV = 100 (FVIF .06, 5 ) (use FVIF table, or) FV = PV (1 + i)n FV = 100 (1.06)5 = $133.82

  10. Compound Interest and Future Value • 3) Future Value - single sums • If you deposit $100 in an account earning 6% with quarterly compounding, how much would you have in the account after 5 years? Mathematical Solution: FV = PV (FVIF i, n ) FV = 100 (FVIF .015, 20 ) (can’t use FVIF table) FV = PV (1 + i/m) m x n FV = 100 (1.015)20 = $134.68

  11. Compound Interest and Future Value • 4) Future Value - single sums • If you deposit $100 in an account earning 6% with monthly compounding, how much would you have in the account after 5 years? Mathematical Solution: FV = PV (FVIF i, n ) FV = 100 (FVIF .005, 60 ) (can’t use FVIF table) FV = PV (1 + i/m) m x n FV = 100 (1.005)60 = $134.89

  12. Compound Interest and Future Value • 5) Future Value - continuous compounding • What is the FV of $1,000 earning 8% with continuous compounding, after 100 years? Mathematical Solution: FV = PV (e in) FV = 1000 (e .08x100) = 1000 (e 8) FV = $2,980,957.99

  13. 0 1 2 3 10% 100 FV = ? What is the future value (FV) of an initial $100 after 3 years, if I/YR = 10%? • Finding the FV of a cash flow or series of cash flows is called compounding. • FV can be solved by using the step-by-step (formula/table), financial calculator, and spreadsheet methods (excel).

  14. Solving for FV:The step-by-step and formula methods • After 1 year: • FV1 = PV (1 + I) = $100 (1.10) = $110.00 • After 2 years: • FV2 = PV (1 + I)2 = $100 (1.10)2 =$121.00 • After 3 years: • FV3 = PV (1 + I)3 = $100 (1.10)3 =$133.10 • After N years (general case): • FVN = PV (1 + I)N

  15. Solving for FV:The calculator method • Solves the general FV equation. • Requires 4 inputs into calculator, and will solve for the fifth. (Set to P/YR = 1 and END mode.) 3 10 -100 0 INPUTS N I/YR PV PMT FV OUTPUT 133.10

  16. Present Value

  17. Present Value • 1) Present Value - single sums • If you receive $100 one year from now, what is the PV of that $100 if your opportunity cost is 6%? Mathematical Solution: PV = FV (PVIF i, n ) PV = 100 (PVIF .06, 1 ) (use PVIF table, or) PV = FV / (1 + i)n PV = 100 / (1.06)1 = $94.34

  18. Present Value • 2) Present Value - single sums • If you receive $100 five years from now, what is the PV of that $100 if your opportunity cost is 6%? Mathematical Solution: PV = FV (PVIF i, n ) PV = 100 (PVIF .06, 5 ) (use PVIF table, or) PV = FV / (1 + i)n PV = 100 / (1.06)5 = $74.73

  19. Present Value • 3) Present Value - single sums • What is the PV of $1,000 to be received 15 years from now if your opportunity cost is 7%? Mathematical Solution: PV = FV (PVIF i, n ) PV = 100 (PVIF .07, 15 ) (use PVIF table, or) PV = FV / (1 + i)n PV = 100 / (1.07)15 = $362.45

  20. Present Value • 4) Present Value - single sums • If you sold land for $11,933 that you bought 5 years ago for $5,000, what is your annual rate of return? Mathematical Solution: PV = FV (PVIF i, n ) 5,000 = 11,933 (PVIF ?, 5 ) PV = FV / (1 + i)n 5,000 = 11,933 / (1+ i)5 .419 = ((1/ (1+i)5) 2.3866 = (1+i)5 (2.3866)1/5 = (1+i) i = .19

  21. Present Value • 5) Present Value - single sums • Suppose you placed $100 in an account that pays 9.6% interest, compounded monthly. How long will it take for your account to grow to $500? Mathematical Solution: PV = FV / (1 + i)n 100 = 500 / (1+ .008)N 5 = (1.008)N ln 5 = ln (1.008)N ln 5 = N ln (1.008) 1.60944 = .007968 N N = 202 months

  22. What is the present value (PV) of $100 due in 3 years, if I/YR = 10%? • Finding the PV of a cash flow or series of cash flows is called discounting (the reverse of compounding). • The PV shows the value of cash flows in terms of today’s purchasing power. 0 1 2 3 10% PV = ? 100

  23. Solving for PV:The formula method • Solve the general FV equation for PV: • PV = FVN / (1 + I)N • PV = FV3 / (1 + I)3 = $100 / (1.10)3 = $75.13

  24. Solving for PV:The calculator method • Solves the general FV equation for PV. • Exactly like solving for FV, except we have different input information and are solving for a different variable. 3 10 0 100 INPUTS N I/YR PV PMT FV OUTPUT -75.13

  25. Solving for I:What interest rate would cause $100 to grow to $125.97 in 3 years? • Solves the general FV equation for I. • Hard to solve without a financial calculator or spreadsheet. 3 -100 0 125.97 INPUTS N I/YR PV PMT FV OUTPUT 8

  26. Solving for N:If sales grow at 20% per year, how long before sales double? • Solves the general FV equation for N. • Hard to solve without a financial calculator or spreadsheet. 20 -1 0 2 INPUTS N I/YR PV PMT FV OUTPUT 3.8

  27. Hint for single sum problems • In every single sum present value and future value problem, there are four variables: FV, PV, i and n. • When doing problems, you will be given three variables and you will solve for the fourth variable. • Keeping this in mind makes solving time value problems much easier!

  28. 0 1 2 3 4 Annuities • Annuity: a sequence of equal cash flows, occurring at the end of each period.

  29. Examples of Annuities: • If you buy a bond, you will receive equal semi-annual coupon interest payments over the life of the bond. • If you borrow money to buy a house or a car, you will pay a stream of equal payments.

  30. Annuities • 1) Future Value – annuity • If you invest $1,000 each year at 8%, how much would you have after 3 years? Calculator Solution: P/Y = 1 I = 8 N = 3 PMT = -1,000 FV = $3,246.40

  31. Future Value - annuityIf you invest $1,000 each year at 8%, how much would you have after 3 years? Mathematical Solution: FV = PMT (FVIFA i, n) FV = 1,000 (FVIFA .08, 3) (use FVIFA table, or) FV = PMT (1 + i)n - 1 i FV = 1,000 (1.08)3 - 1 = $3246.40 .08

  32. Annuities • 1) Present Value - annuity • What is the PV of $1,000 at the end of each of the next 3 years, if the opportunity cost is 8%? Calculator Solution: P/Y = 1 I = 8 N = 3 PMT = -1,000 PV = $2,577.10

  33. Present Value - annuityWhat is the PV of $1,000 at the end of each of the next 3 years, if the opportunity cost is 8%? Mathematical Solution: PV = PMT (PVIFA i, n) PV = 1,000 (PVIFA .08, 3) (use PVIFA table, or) 1 PV = PMT 1 - (1 + i)n i 1 PV = 1000 1 - (1.08 )3 = $2,577.10 .08

  34. Ordinary Annuity (end) 0 1 2 3 i% PMT PMT PMT Annuity Due (beginning) 0 1 2 3 i% PMT PMT PMT What is the difference between an ordinary annuity and an annuity due?

  35. Solving for FV:3-year ordinary annuity of $100 at 10% • $100 payments occur at the end of each period, but there is no PV. 3 10 0 -100 INPUTS N I/YR PV PMT FV OUTPUT 331

  36. Solving for PV:3-year ordinary annuity of $100 at 10% • $100 payments still occur at the end of each period, but now there is no FV. 3 10 100 0 INPUTS N I/YR PV PMT FV OUTPUT -248.69

  37. Solving for FV:3-year annuity due of $100 at 10% • Now, $100 payments occur at the beginning of each period. • FVAdue= FVAord(1+I) = $331(1.10) = $364.10. • Alternatively, set calculator to “BEGIN” mode and solve for the FV of the annuity: BEGIN 3 10 0 -100 INPUTS N I/YR PV PMT FV OUTPUT 364.10

  38. Solving for PV:3-year annuity due of $100 at 10% • Again, $100 payments occur at the beginning of each period. • PVAdue= PVAord(1+I) = $248.69(1.10) = $273.55. • Alternatively, set calculator to “BEGIN” mode and solve for the PV of the annuity: BEGIN 3 10 100 0 INPUTS N I/YR PV PMT FV OUTPUT -273.55

  39. What is the present value of a 5-year $100 ordinary annuity at 10%? • Be sure your financial calculator is set back to END mode and solve for PV: • N = 5, I/YR = 10, PMT = 100, FV = 0. • PV = $379.08

  40. What if it were a 10-year annuity? A 25-year annuity? A perpetuity? • 10-year annuity • N = 10, I/YR = 10, PMT = 100, FV = 0; solve for PV = $614.46. • 25-year annuity • N = 25, I/YR = 10, PMT = 100, FV = 0; solve for PV = $907.70. • Perpetuity • PV = PMT / I = $100/0.1 = $1,000.

  41. Other Cash Flow Patterns • Perpetuities • Suppose you will receive a fixed payment every period (month, year, etc.) forever. This is an example of a perpetuity. • You can think of a perpetuity as an annuity that goes on forever.

  42. Present Value of a Perpetuity • When we find the PV of an annuity, we think of the following relationship: PV = PMT (PVIFA i, n )

  43. 1 n 1 - (1 + i) i Mathematically, (PVIFA i, n ) = We said that a perpetuity is an annuity where n = infinity. What happens to this formula when n gets very, very large?

  44. 1 n 1 - (1 + i) i 1 i When n gets very large, this becomes zero. So we’re left with PVIFA =

  45. PMT PV = i Present Value of a Perpetuity • So, the PV of a perpetuity is very simple to find:

  46. PMT $10,000 i .08 = $125,000 PV = = What should you be willing to pay in order to receive $10,000 annually forever, if you require 8% per year on the investment?

  47. The Power of Compound Interest A 20-year-old student wants to save $3 a day for her retirement. Every day she places $3 in a drawer. At the end of the year, she invests the accumulated savings ($1,095) in a brokerage account with an expected annual return of 12%. How much money will she have when she is 65 years old?

  48. 45 12 0 -1095 INPUTS N I/YR PV PMT FV OUTPUT 1,487,262 Solving for FV:If she begins saving today, how much will she have when she is 65? • If she sticks to her plan, she will have $1,487,261.89 when she is 65. • N = 45, I/YR = 12, PMT = -1095, PV = 0; solve for FV = $1,487,262.

  49. Solving for FV:If you don’t start saving until you are 40 years old, how much will you have at 65? • If a 40-year-old investor begins saving today, and sticks to the plan, he or she will have $146,000.59 at age 65. This is $1.3 million less than if starting at age 20. • Lesson: It pays to start saving early. 25 12 0 -1095 INPUTS N I/YR PV PMT FV OUTPUT 146,001

  50. Solving for PMT:How much must the 40-year old deposit annually to catch the 20-year old? • To find the required annual contribution, enter the number of years until retirement and the final goal of $1,487,261.89, and solve for PMT. 25 12 0 1,487,262 INPUTS N I/YR PV PMT FV OUTPUT -11,154.42

More Related