1 / 32

MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu

CS173. Lecture 3: Protein coding genes. MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu. Annonuncements. http://cs173.stanford.edu/ is up Course guidelines, lecture slides, etc. Communications via Pizza

wyman
Download Presentation

MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS173 Lecture 3: Protein coding genes MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu http://cs173.stanford.edu [BejeranoWinter12/13]

  2. Annonuncements • http://cs173.stanford.edu/ is up • Course guidelines, lecture slides, etc. • Communications via Pizza • Private Q: post to “instructors” not “class” • Auditors sign up too • Office hours TBA before HW1 • Project groups: TBD after “shopping season” • Tutorials: first three Wednesdays • Recommended to bring your laptop to UCSC tutorial 1/16 • We will be recruiting for our lab from class • Many other labs on campus would love to have you too! http://cs173.stanford.edu [BejeranoWinter12/13]

  3. TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAGTTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG Genome Content http://cs173.stanford.edu [BejeranoWinter12/13]

  4. Central Dogma of Biology

  5. Genomes, Genes & Proteins The most visible instructions in our genome are Genes. Genes explain exactly HOW to synthesize any protein. Proteins are the work horses of every living cell. gene Genome: ...ACGTACGACTGACTAGCATCGACTACGACTAGCAC... cell protein http://cs173.stanford.edu [BejeranoWinter12/13]

  6. Gene Structure http://cs173.stanford.edu [BejeranoWinter12/13]

  7. Gene Processing http://cs173.stanford.edu [BejeranoWinter12/13]

  8. Translation: The Genetic Code http://cs173.stanford.edu [BejeranoWinter12/13]

  9. The gene centric genome “The Genetic code” A gene centric term. For a gene centric world. But fashions change. Controlled by mass media, technology, money, and a bit of scientific truth. http://cs173.stanford.edu [BejeranoWinter12/13]

  10. Visualizing Gene Structure http://cs173.stanford.edu [BejeranoWinter12/13]

  11. Genes in the Human Genome There are ~25,000 protein coding genes in the human genome. (Even half way through sequencing the human genome, Researchers thought there will be well over 100,000 genes). http://cs173.stanford.edu [BejeranoWinter12/13]

  12. Everything in Genomics is a Moving Target Why ~25,000? • The genomes (ie, assemblies) • Their annotations • Our understanding of Biology • The portals Conclusion: write code that can be run... and rerun and rerun and rerun and rerun http://cs173.stanford.edu [BejeranoWinter12/13]

  13. Gene Finding I: ab initio Challenge: “Find the genes, the whole genes, and nothing but the genes” Understand Biology  Write discovery tools (Our) answer depends on our understanding, data & tools http://cs173.stanford.edu [BejeranoWinter12/13]

  14. Gene (Protein really) Functions The most visible instructions in our genome are Genes. Genes explain exactly HOW to synthesize any protein. Proteins are the work horses of every living cell. gene Genome: ...ACGTACGACTGACTAGCATCGACTACGACTAGCAC... Just look at the cell. Lots and lots of different functions to perform. (“Only 20,000 genes”..) cell protein http://cs173.stanford.edu [BejeranoWinter12/13]

  15. First full draft of the Human Genome Human Genome Consortium (HGC) Celera 2001 http://cs173.stanford.edu [BejeranoWinter12/13]

  16. Biological Functions of the Human Gene Set Focus onthe X axis: [HGC, 2001] http://cs173.stanford.edu [BejeranoWinter12/13]

  17. Molecular Functions of the Human Gene Set [Celera, 2001] http://cs173.stanford.edu [BejeranoWinter12/13]

  18. Biological vs. Molecular Function: Pathways Proteins with very different molecular functions participate to manifest a single biological function, for example: a pathway. http://cs173.stanford.edu [BejeranoWinter12/13]

  19. “Special” Function: Gene Regulation 2,000 different proteins can bind specific DNA sequences. Proteins DNA Protein binding site Gene DNA Proteins that regulate the transcription of other proteins are called transcription factors. http://cs173.stanford.edu [BejeranoWinter12/13]

  20. The Importance of Gene Regulation The looks & capabilities of different cells are determined by the subset of genes they express. Different cell types express very different gene repertoires (from the same genome). To change its behavior a cell can change its transcriptional program. Think of it as a giant state machine… http://cs173.stanford.edu [BejeranoWinter12/13]

  21. “Special” Function: Cell Signaling Cells also talk with each other. They send and receive messages,and change their behavior according to messages they receive. http://cs173.stanford.edu [BejeranoWinter12/13]

  22. Signal Transduction Now its an even bigger state machine of individual state machines (=cells) talking with each other, orchestrating their individual activities. http://cs173.stanford.edu [BejeranoWinter12/13]

  23. Back to Genes & Their Functions Gene (DNA) sequence determines protein (AA) sequence,which determines protein (3D) structure,which determines protein’s function. http://cs173.stanford.edu [BejeranoWinter12/13]

  24. Protein Folding Protein folding is the challenge of deducing protein structurefrom protein sequence. It’s a tough one… http://cs173.stanford.edu [BejeranoWinter12/13]

  25. Gene Families, Gene Names Genes (proteins) come in families. Genes of the same family have similar sequences. Which is why the fold into similar structure and perform similar functions. Genes of the same family will typically have a “family name” followed by a (sequential) number or “first name”. http://cs173.stanford.edu [BejeranoWinter12/13]

  26. Alternative Splicing http://cs173.stanford.edu [BejeranoWinter12/13]

  27. Genes in the Human Genome When you only show one transcript per gene locus: If you ask the GUI to show you all well established gene variants: http://cs173.stanford.edu [BejeranoWinter12/13]

  28. Protein Domains SKSHSEAGSAFIQTQQLHAAMADTFLEHMCRLDIDSAPITARNTGIICTIGPASRSVETLKEMIKSGMNVARMNFSHGTHEYHAETIKNVRTATESFASDPILYRPVAVALDTKGPEIRTGLIKGSGTAEVELKKGATLKITLDNAYMAACDENILWLDYKNICKVVEVGSKVYVDDGLISLQVKQKGPDFLVTEVENGGFLGSKKGVNLPGAAVDLPAVSEKDIQDLKFGVDEDVDMVFASFIRKAADVHEVRKILGEKGKNIKIISKIENHEGVRRFDEILEASDGIMVARGDLGIEIPAEKVFLAQKMIIGRCNRAGKPVICATQMLESMIKKPRPTRAEGSDVANAVLDGADCIMLSGETAKGDYPLEAVRMQHLIAREAEAAMFHRKLFEELARSSSHSTDLMEAMAMGSVEASYKCLAAALIVLTESGRSAHQVARYRPRAPIIAVTRNHQTARQAHLYRGIFPVVCKDPVQEAWAEDVDLRVNLAMNVGKAAGFFKKGDVVIVLTGWRPGSGFTNTMRVVPVP A protein domain is a subsequence of the protein that folds independently of the other portions of the sequence, and often confers to the protein one or more specific functions. http://cs173.stanford.edu [BejeranoWinter12/13]

  29. Alt. Splicing and Protein Repertoire Alternative splicing often produces protein variants that have a different domain composition, and thus perform different functions. http://cs173.stanford.edu [BejeranoWinter12/13]

  30. Retroposed Genes and Pseudogenes Pseudogenes (“dead genes”): Genomic sequences that resemble (originated from) genes that no longer make proteins. Retrogenes (“retrotranscribed”): Protein coding RNA that was reverse transcribed and inserted back into the genome. The RNA can be grabbed at any stage (partial/full transcript, before/during/after all introns are spliced). http://cs173.stanford.edu [BejeranoWinter12/13]

  31. Gene Ontologies Make a controlled vocabulary of gene functions. Annotate all genes using this vocabulary. Map: genes  papers  biological functions. (plenty room for Natural Language Processing) Used to catalog human gene functions, and alsowhich genes are expressed where,what defects have been found when certain genes are mutated, etc. http://cs173.stanford.edu [BejeranoWinter12/13]

  32. Review Lecture 3 • Central dogma recap • Focus on protein coding genes • Gene structure • exon, intron, 3’/5’ utr, CDS recap • The genetic code • UCSC genome browser sneak peak • human genome stats • Gene finding I: ab initio • Gene (protein) function • Cell structure, chemical reactions etc • Pathways (vs. function) • information processing roles • TFs • signaling: ligands, receptors, kinases • Gene families • similar sequence -> structure -> function • protein domains • splice variants, alt promoters • Special cases • Pseudogenes • Retroposed genes (and the distinction between the two) • Gene ontologies http://cs173.stanford.edu [BejeranoWinter12/13]

More Related