490 likes | 586 Views
Using Mata to Import Illumina SNP Chip Data For Genome-Wide A ssociation Studies Stata Conference London 2011 September 16, 2011. John Charles “Chuck” Huber Jr, PhD Associate Professor of Biostatistics Department of Epidemiology and Biostatistics School of Rural Public Health
E N D
Using Mata to Import Illumina SNP Chip Data For Genome-WideAssociation StudiesStata Conference London 2011September 16, 2011 John Charles “Chuck” Huber Jr, PhD Associate Professor of Biostatistics Department of Epidemiology and Biostatistics School of Rural Public Health Texas A&M Health Science Center jchuber@tamu.edu
Motivation – Project Heartbeat! Reference: Fulton, JE, Dai, S, Grunbaum, JA, Boerwinkle, E, Labarthe, R (1999) Apolipoprotein E affects serial changes In total and low-density lipoprotein cholesterol in adolescent girls: Project Heartbeat!. Metabolism 48(3): 285-290
Motivation Reference: Fulton, JE, Dai, S, Grunbaum, JA, Boerwinkle, E, Labarthe, R (1999) Apolipoprotein E affects serial changes In total and low-density lipoprotein cholesterol in adolescent girls: Project Heartbeat!. Metabolism 48(3): 285-290
Motivation Reference: Fulton, JE, Dai, S, Grunbaum, JA, Boerwinkle, E, Labarthe, R (1999) Apolipoprotein E affects serial changes In total and low-density lipoprotein cholesterol in adolescent girls: Project Heartbeat!. Metabolism 48(3): 285-290
Motivation • Human genetics studies in the 1990s tended to focus on family data – Project Heartbeat! was a population-based study (no relatives) • Genetic studies of unrelated individuals became popular in the 2000s • Genetic markers called Single Nucleotide Polymorphisms (SNPs) became cheap to ascertain on a very large scale
What is a SNP? Hartl & Jones (1998) pg 9, Figure 1.5
What is a SNP? Watson et al. (2004) pg 23, Figure 2.5
What is a SNP? • A SNP is a single nucleotide polymorphism (the individual nucleotides are called alleles) ataagtcgatactgatgcatagctagctgactgacgcgatataagtccatactgatgcatagctagctgactgaagcgat ataagtccatactgatgcatagctagctgactgacgcgat ataagtcgatactgatgcatagctagctgactgaagcgat Person 1 – Chromosome 1 Person 1 – Chromosome 2 Person 2 – Chromosome 1 Person 2 – Chromosome 2 SNP1 SNP2
Motivation Stored Genotype Data Blood samples and DNA available for 131 African-American and 505 non-Hispanic white children between 8 and 17 years of age.
Motivation Stored Phenotype Data Longitudinal measurements of: Body Mass Index Total Cholesterol HDL & LDL Cholesterol Systolic and Diastolic BP Much, much more…..
Motivation Let’s go gene hunting!!!
Challenges • Longitudinal Data – (can’t use PLINK or HelixTree) • Specialized genetic data analysis • Need to run a very large number of models • Multiple comparisons and replication • Scaling up to 100,000 SNP Chips
IlluminaCVD BeadChip “The HumanCVD BeadChip is the first high-density single nucleotide polymorphism (SNP) genotyping standard panel specifically targeted for cardiovascular disease (CVD) studies. The BeadChip features nearly 50,000 SNPs that capture genetic diversity across approximately 2,100 genes associated with CVD processes such as blood pressure changes, insulin resistance, metabolic disorders, dyslipidemia, and inflammation.” Source: http://www.illumina.com/products/humancvd_whole_genome_genotyping_kits.ilmn
Illumina Metabochip • The “Metabochip” is a popular “iSelect” BeadChip • Panel of 200,000 SNPs • Focus on SNPs in genes related to general metabolism, diabetes and cardiovascular disease Source: http://www.illumina.com/applications/detail/snp_genotyping_and_cnv_analysis/custom_mid_to_high_plex_genotyping.ilmn
The CVD BeadChip Data Header Information Person 1, SNP 1 Person 1, SNP 50,000 Person 2, SNP 1 Person 2, SNP 50,000 Person 674, SNP 1 Person 674, SNP 50,000 674 x 50,000 = 33,700,000 lines!!!
The Metabochip Data Header Information Person 1, SNP 1 Person 1, SNP 200,000 Person 2, SNP 1 Person 2, SNP 200,000 Person 674, SNP 1 Person 674, SNP 200,000 674 x 200,000 = 134,800,000 lines!!!
Meta-Data About SNPs We also have metadata such as quality control information about each SNP. Ideally, we would like to import this into our dataset. 50,000 lines Or 200,000 lines
Meta-Data About Participants We also have metadata about each participant. It would be nice to import this into our dataset also. 674 Lines
How do we put it all together?!? Question How do we sift through tens of millions of records across three files in a reasonable amount of time and gather the information into a useful Stata dataset?
ImportIllumina // EXAMPLE SYNTAX: local SnpList "rs1000113 rs1000115 rs10001190 rs10002186 rs10002743“ local DataFile "Hallman_PHB_CVD_Final_110228_GenotypingReport.csv" local MarkerFile "Hallman_PHB_CVD_Final_110228_LocusSummary.csv“ local SampleFile "Hallman_PHB_CVD_Final_110228_SamplesTable.csv“ ImportIllumina `SnpList', datafile(`DataFile') snpfile(`MarkerFile') samplefile(`SampleFile')
Software Limits • “infix” and “infile” won’t work because we would exceed the limit of 32,767 variables. • But we can import over 2 billion records and if we are clever, we could parse the data into separate files perhaps by chromosome. Maximum size limits Stata/MP and Small Stata/IC Stata/SE --------------------------------------------------------------------------------------- # of observations (1) 1,200 2,147,483,647 2,147,483,647 # of variables 99 2,047 32,767 width of a dataset in bytes 800 24,564 393,192 value of matsize 100 800 11,000
Answer: Mata! Introduction to Mata “Mata is a full-blown programming language that compiles what you type into byte-code, optimizes it, and executes it fast. Behind the scenes, many of Stata’s commands are implemented using Mata. You can use Mata to implement big systems, or you can use it interactively.” Source: http://stata.com/whystata/intromata.html
Features of Mata • Has low level file Input/Output capabilities • Can store strings in matrices • Can tokenize lists • Can create variables in Stata datasets • Can modify data in Stata datasets • Can pass macros back-and-forth with Stata • Can execute Stata commands from within Mata • Can Pass datasets back-and-forth with Stata
Biggest Advantage of Mata But most importantly – Mata is very, very fast!
Disclaimer I am, at best, a novice Mata programmer so the following code is meant to show “A” way to do something but certainly not “THE” way to do something.
String Matrices in Mata Program mata SnpData = ("100011", "G/G", "G/G" \ "100021" , "G/G", "A/G" \ "100031", "G/G", "A/G") SnpData end Result . mata -------------------------- mata (type end to exit) ----------------------------------------- : SnpData = ("100011", "G/G", "G/G" \ "100021" , "G/G", "A/G" \ "100031", "G/G", "A/G") : SnpData 1 2 3 +----------------------------+ 1 | 100011 G/G G/G | 2 | 100021 G/G A/G | 3 | 100031 G/G A/G | +----------------------------+ : end
Mata File I/O Program mata // INITIATE MATA SESSION fh1 = fopen(SampleFilename, "r") // OPEN THE ASCII FILE TempLine = fget(fh1) // READ A LINE FROM THE FILE TempLine // DISPLAY THE LINE FROM THE FILE TempLine = fget(fh1) // READ THE NEXT LINE TempLine // DISPLAY THE LINE FROM THE FILE fclose(fh1) // CLOSE THE ASCII FILE end // END MATA SESSION Result . mata // INITIATE MATA SESSION ----------------------------------- mata (type end to exit) ---------------------------------- : fh1 = fopen("sampledata.txt", "r") // OPEN THE ASCII FILE : TempLine = fget(fh1) // READ A LINE FROM THE FILE : TempLine // DISPLAY THE LINE FROM THE FILE [Header] : TempLine = fget(fh1) // READ THE NEXT LINE : TempLine // DISPLAY THE LINE FROM THE FILE GSGT Version,1.8.4 : fclose(fh1) // CLOSE THE ASCII FILE : end // END MATA SESSION
Mata Tokenize Program mata snps = “snp1,snp2,snp3" t = tokeninit(",") // IDENTIFY THE PARSING CHARACTER tokenset(t,snps) // USE RULE DEFINED IN "t" TO TOKENIZE “snps" TokenSnps = tokengetall(t) // STORE ALL OF THE TOKENS TO "TokenSnps" TokenSnps[1] // VIEW THE FIRST TOKEN TokenSnps[2] // VIEW THE SECOND TOKEN TokenSnps[3] // VIEW THE THIRD TOKEN end Result . mata ------------------------------------- mata (type end to exit) ------------------------------------------- : snps = “snp1,snp2,snp3“ : t = tokeninit(",") // IDENTIFY THE PARSING CHARACTER : tokenset(t,snps) // USE RULE DEFINED IN "t" TO TOKENIZE “snps“ : TokenSnps = tokengetall(t) // STORE ALL OF THE TOKENS TO “snps“ : TokenSnps[1] // VIEW THE FIRST TOKEN snp1 : TokenSnps[2] // VIEW THE SECOND TOKEN snp2 : TokenSnps[3] // VIEW THE THIRD TOKEN snp3 : end
Variables: Mata to Stata Program clear mata st_addvar("str10",“snps") // ADD A NEW VARIABLE CALLED “snps" st_addobs(1) // APPEND A NEW OBSERVATION TO STATA st_sstore(st_nobs(),“snps",“snp1") // STORE “snp1" TO THE VARIABLE “snps" st_addobs(1) // APPEND A NEW OBSERVATION TO STATA st_sstore(st_nobs(),“snps",“snp2") // STORE “snp2" TO THE VARIABLE “snps" end Result
Local Macros: Mata to Stata Program mata SnpListStata = "snp1 snp2 snp3" // DEFINE A VARIABLE IN MATA st_local("SnpListStata", SnpListMata) // SENS THE LOCAL MACRO IN STATA end disp "The SNPs in the list are: `SnpListStata'" Result . mata --------------- mata (type end to exit) -------------------------------- : SnpListStata = "snp1 snp2 snp3" // DEFINE A VARIABLE IN MATA : st_local("SnpListStata", SnpListMata) // SENS THE LOCAL MACRO IN STATA : end ------------------------------------------------------------------------- . disp "The SNPs in the list are: `SnpListStata'" The SNPs in the list are: snp1 snp2 snp3
Local Macros: Stata to Mata Program local SnpListStata "snp1 snp2 snp3" // DEFINE A LOCAL MACRO IN STATA mata SnpListMata = st_local("SnpListStata") // GRAB THE LOCAL MACRO IN MATA SnpListMata end Result . local SnpListStata "snp1 snp2 snp3" . mata ------------------------- mata (type end to exit) ----------------------- : SnpListMata = st_local("SnpListStata") : SnpListMata snp1 snp2 snp3 : //st_local("SnpListMata", SnpListStata) : : end
Stata Commands in Mata Program mata void function TempFunc() { stata("clear") stata("set obs 3") stata("gen id = [_n]") } end Result
Stata to Mata: putmata Program putmata Id rs1000113 rs1000115 mata Id rs1000113 end Result . mata -------------------------- mata (type end to exit) ----------------------------------------------- : Id 1 +----------+ 1 | 100011 | 2 | 100021 | 3 | 100031 | +----------+ : rs1000113 1 +-------+ 1 | G/G | 2 | G/G | 3 | G/G | +-------+ : end
Mata to Stata: getmata drop rs1000113 rs1000115 getmata rs1000113 rs1000115, id(Id)
Variable “Characteristics” Sometimes we would like to store “meta-data” or “characteristics” about our variables. This is easily done in Stata with the “char” command: * EXAMPLE OF HOW TO ADD CHARACTERISTICS TO A VARIABLE AND EXTRACT THEM TO A LOCAL MACRO char SNP1[chromosome] 7 char SNP1[gene] Gene1 char SNP1[position] 142702852 local TempChromosome : char SNP1[chromosome] local TempGene : char SNP1[gene] local TempPosition : char SNP1[position] . disp "SNP1 is on Chromosome `TempChromosome', in `TempGene' at position `TempPosition'" SNP1 is on Chromosome 7, in Gene1 at position 142702852
ImportIllumina // EXAMPLE SYNTAX: local SnpList "rs1000113 rs1000115 rs10001190 rs10002186 rs10002743“ local DataFile "Hallman_PHB_CVD_Final_110228_GenotypingReport.csv" local MarkerFile "Hallman_PHB_CVD_Final_110228_LocusSummary.csv“ local SampleFile "Hallman_PHB_CVD_Final_110228_SamplesTable.csv“ ImportIllumina `SnpList', datafile(`DataFile') snpfile(`MarkerFile') samplefile(`SampleFile')
ImportIllumina Rough Sketch of Code for ImportIllumina: Stata program syntax { Mata function to import raw data Mata function to import and merge participant QC data Mata function to import SNP QC data and place it in variable characteristics Stata “housekeeping” code }
ImportIllumina - Output . char list rs1000113[] rs1000113[note1]: possibly carried fwd rs1000113[note0]: 1 rs1000113[Row]: 129 rs1000113[Locus_Name]: rs1000113 rs1000113[Illumicode_Name]: 1010142 rs1000113[No_Calls]: 0 rs1000113[Calls]: 674 rs1000113[Call_Freq]: 1.000 rs1000113[AA_Freq]: 0.018 rs1000113[AB_Freq]: 0.177 rs1000113[BB_Freq]: 0.806 rs1000113[Minor_Freq]: 0.106 rs1000113[Gentrain_Score]: 0.8266 rs1000113[GC50_Score]: 0.8542 rs1000113[GC10_Score]: 0.8542 rs1000113[Het_Excess_Freq]: -0.0691 rs1000113[ChiTest_P100]: 0.4897 rs1000113[Cluster_Sep]: 0.9035 rs1000113[AA_T_Mean]: 0.022 rs1000113[AA_T_Std]: 0.016 rs1000113[AB_T_Mean]: 0.631 rs1000113[AB_T_Std]: 0.032 rs1000113[BB_T_Mean]: 0.984 rs1000113[BB_T_Std]: 0.007 rs1000113[AA_R_Mean]: 1.002 rs1000113[AA_R_Std]: 0.109 rs1000113[AB_R_Mean]: 1.178 rs1000113[AB_R_Std]: 0.130 rs1000113[BB_R_Mean]: 1.076 rs1000113[BB_R_Std]: 0.100
ImportIllumina - Output . char list rs1000115[] rs1000115[note1]: possibly carried fwd rs1000115[note0]: 1 rs1000115[Row]: 130 rs1000115[Locus_Name]: rs1000115 rs1000115[Illumicode_Name]: 6400181 rs1000115[No_Calls]: 1 rs1000115[Calls]: 673 rs1000115[Call_Freq]: 0.999 rs1000115[AA_Freq]: 0.131 rs1000115[AB_Freq]: 0.474 rs1000115[BB_Freq]: 0.395 rs1000115[Minor_Freq]: 0.368 rs1000115[Gentrain_Score]: 0.7572 rs1000115[GC50_Score]: 0.7449 rs1000115[GC10_Score]: 0.7449 rs1000115[Het_Excess_Freq]: 0.0193 rs1000115[ChiTest_P100]: 0.8470 rs1000115[Cluster_Sep]: 0.6517 rs1000115[AA_T_Mean]: 0.035 rs1000115[AA_T_Std]: 0.012 rs1000115[AB_T_Mean]: 0.579 rs1000115[AB_T_Std]: 0.054 rs1000115[BB_T_Mean]: 0.979 rs1000115[BB_T_Std]: 0.008 rs1000115[AA_R_Mean]: 1.708 rs1000115[AA_R_Std]: 0.278 rs1000115[AB_R_Mean]: 1.870 rs1000115[AB_R_Std]: 0.266 rs1000115[BB_R_Mean]: 1.523 rs1000115[BB_R_Std]: 0.172
Data checking with the “snpsumm” command: . snpsumm rs1000113 rs1000115 rs10001190 rs10002186 rs10002743, listhw missing("?/?") separator("/") Hardy-Weinberg Equilibrium Information ================================================================= maf is the Minor Allele Frequency hw_c2 is the Pearson Chi-squared hw_c2p is the Pearson Chi-Squared p-value hw_lr is the Likelihood Ratio Chi-squared hw_lrp is the Likelihood Ratio Chi-Squared p-value hw_ex is the Exact p-value ================================================================= +-------------------------------------------------------------------+ | Marker maf hw_c2 hw_c2p hw_lr hw_lrp hw_ex | |-------------------------------------------------------------------| 1. | rs1000113 0.0746 10.44 0.0012 9.05 0.0026 0.0024 | 2. | rs1000115 0.1022 4223.77 0.0000 154.65 0.0000 . | 3. | rs10001190 0.3342 0.52 0.4702 0.52 0.4706 0.4678 | 4. | rs10002186 . . . . . . | 5. | rs10002743 0.3439 4226.53 0.0000 133.11 0.0000 . | +-------------------------------------------------------------------+
Actual Analysis Lowess curve of BMI over age
Summary Mata is a very useful and fast programming environment for low-level file I/O and large-scale string manipulation! ImportIllumina is still in beta-testing but will be submitted to the Stata Journal soon.
An Introduction to Stata Programmingby Christopher Baum Table of Contents • Why should you become a Stata programmer? • Some elementary concepts and tools • Do-file programming: Functions, macros, scalars, and matrices • Cookbook: Do-file programming I • Do-file programming: Validation, results, and data management • Cookbook: Do-file programming II • Do-file programming: Prefixes, loops, and lists • Cookbook: Do-file programming III • Do-file programming: Other topics • Cookbook: Do-file programming IV • Ado-file programming • Cookbook: Ado-file programming • Mata functions for ado-file programming • Cookbook: Mata function programming
Co-Authors • Michael Hallman, PhD (Principal Investigator) • Victoria Friedel, MA • Melissa Richard, MS • Huandong Sun All at University of Texas School of Public Health
Acknowledgements • Grant 1-R01DK073618-02 from the National Institute of Diabetes and Digestive and Kidney Diseases • Michael Hallman, PhD • Assistant Professor of Epidemiology, UTSPH-Houston • Eric Boerwinkle, PhD • Professor and Director of the Division of Epidemiology • Kozmetsky Family Chair in Human Genetics, UTSPH-Houston • Darwin Labarthe, MD, PhD, MPH • Director of the Division for Heart Disease and Stroke Prevention, CDC-Atlanta