1 / 39

Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard

RPMBT-15, Columbus, Ohio, July 31 st , 2009. Fermi Polarons - Building a Fermi Liquid from the Bottom Up -. Martin Zwierlein. Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard $$$: NSF, AFOSR- MURI, Sloan Foundation. Swimming in the Fermi sea.

wyome
Download Presentation

Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RPMBT-15, Columbus, Ohio, July 31st, 2009 Fermi Polarons- Building a Fermi Liquid from the Bottom Up - Martin Zwierlein Massachusetts Institute of Technology Center for Ultracold Atoms at MIT and Harvard $$$: NSF, AFOSR- MURI, Sloan Foundation

  2. Swimming in the Fermi sea What is the fate of a singleimpurity in a Fermi sea? • Crucial question for • electron transport in lattices • Kondo problem(single magnetic impurity) • mobility of 3He in 4He… • determines the properties ofmany condensed matter systems at low temperature

  3. Polarons: The “N+1”-body problem Polarons • Historically:e- interacting with lattice distortions (phonons) L. D. Landau, Phys. Z. Sowjetunion 3 664 (1933). • Quasi-particle:Electron and its polarization cloud • “Dressed” energy • Weight Z – probability of free propagation • Effective mass m* • Found “everywhere”, important for colossal magnetoresistance, affects spectral function of High-TC materials, applied to fullerenes, polymers, etc… Theory: Landau, Froehlich, Feynman, Anderson

  4. Impurities interacting with a Fermi sea • Example: Kondo effectA spin impurity interacting with Fermi sea of electronsleads to increase in resistance at low temperatures • Our cold atom system: • Mobile impurity interacting with Fermi sea of atoms • Highly imbalanced mixture of two hyperfine states • Highly controllable • Tunable, resonant interactions • All relevant parameters known: Allows quantitative test of many-body theories • Polaron properties determine phase diagram of imbalanced Fermi mixtures

  5. Tunable Interactions Vary interaction strength between spin up and spin down Example: tunable square well (with ): strong attractiondeep bound state Resonancebound state appears weak attractionno bound state scattering length

  6. At high fields, states |1> and |2> havelarge and negative scattering length a12 = −2100 a0 Preparation of an interacting Fermi system in Lithium-6 Electronic spin: S = ½, Nuclear Spin: I = 1  (2I+1)(2S+1) = 6 hyperfine states Optical trapping @ 1064 nm naxial = 10-20 Hznradial= 50–200 Hz Etrap = 0.5 - 5 mK

  7. Feshbach Resonances Scattering Length a0 ] [ [MHz] Energy bound state Atoms form stable molecules Isolated atom pairs are unstable [G] Magnetic Field

  8. The BEC-BCS Crossover

  9. Vortices in the BEC-BCS Crossover Vortex lattices in the BEC-BCS crossover Establishes superfluidityandphase coherence in gases of fermionic atom pairs M.W. Zwierlein, J.R. Abo-Shaeer, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 435, 1047-1051 (2005)

  10. Fermionic Superfluidity withImbalanced Spin Populations What if there are more boys then girls…?

  11. Fermionic Superfluidity with Imbalanced Spin Populations |1> |2> 0% 6% 12% 22% 30% 56% 90% 94% M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006)

  12. Phase Diagram for Unequal Mixtures Normal P Superfluid BEC BCS Breakdown: Critical polarization Pc Gap D M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Science 311, 492 (2006)

  13. Swimming in the Fermi Sea Molecule Polaron Mean Field ? strong attraction weak attraction Energy Theory: Chevy, Forbes, Bulgac, Lobo, Giorgini, Stringari, Prokof’ev, Svistunov,Sachdev, Sheehy, Radzihovsky, Lamacraft, Combescot, Sa de Melo

  14.      Swimming in the Fermi sea A single atom immersed in a cloudwith unitarity limited interactions Binding energy must be universal E = -AEF A = 0.6 F. Chevy PRA 74, 063628 (2006), Variational Cooper pair AnsatzC. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL97, 200403 (2006), Monte-Carlo

  15. Swimming in the Fermi sea Polaron: F. Chevy PRA 74, 063628 (2006), Variational Cooper pair AnsatzC. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL97, 200403 (2006), Monte-Carlo

  16. Swimming in the Fermi sea Polaron: F. Chevy PRA 74, 063628 (2006), Variational Cooper pair AnsatzC. Lobo, A. Recati, S. Giorgini, S. Stringari, PRL97, 200403 (2006), Monte-Carlo

  17. Polaron Energy 1/kF a Meanfield bareMolecule Polaron E/EF Mean-field limit Molecular limit Variational approach/T-Matrix: F. Chevy PRA 74, 063628 (2006), R. Combescot and S. Giraud, PRL 101, 050404 (2008), R. Combescot et al.,PRL 98, 180402 (2007) Diagrammatic Monte-Carlo: N. V. Prokof'ev and B. V. Svistunov, PRB 77, 125101 (2008) T-matrix/ladder approximation: P. Massignan, G. Bruun and H. Stoof, PRA 78, 031602 (2008)

  18. Polaron Quasi-particle weight = Probability of free propagation Weakly interacting limit: Scattering cross section ~ interparticle distance 1/kF -1/kF a

  19. Can we measure thebinding energy?

  20. Radiofrequency spectroscopy       S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, and W. Ketterle, Science 300, 1723 (2003)

  21. Molecular Pairing  3              Radiofrequency spectroscopy No interactions  3  Photon energy = Zeeman + Binding + Kinetic energy

  22. Molecular Pairing  3        Radiofrequency spectroscopy Loss in |2> C.Chin et al. Science, 305, 1128 (2004) Photon energy = Zeeman + Binding + Kinetic energy

  23. Experimental Realization RF spectroscopy 6Li - Atom: 6 hyperfine states |h> |i> |free> • Spatially resolved • 3D reconstructed Feshbach Resonance at 690G

  24. RF Spectroscopy with in situ Images In situ phase contrast images provide a local probe Signal (a.u.) Radio-frequency offset (kHz) Y. Shin et al, PRL 99, 090403 (2007)

  25. 3d Density Reconstruction Tomographic RF spectroscopy: 3D reconstruction Cylindrical symmetry, Inverse Abel transformation:

  26. Emergence of the Fermi Polaron towards Unitarity Molecular limit A. Schirotzek, C. Wu, A. Sommer, MWZ, PRL, to be published, arXiv/0902.3021

  27. RF Spectroscopy on Polarons Polaron = Free particle + scattered states + Energy Final states afterRF Pulse: OR: Energy Energy RF Spectrum from Fermi’s Golden Rule: i.e.:

  28. RF Spectroscopy on Polarons Polaron = Free particle + scattered states RF Spectrum: Polaron weight: Z Narrow peak long lifetime Scattered states(particle-hole excitations) High energy High momentum Short range physics Spectrum @ 690 G

  29. Quasiparticle residue vs interaction strength S. Pilati, S. Giorgini, PRL 100, 030401 Polaron weight 40% on resonance Molecular limit Mean Field limit |1> majority |3> majority Interaction Strength 1/kFa • Polarons transition to molecules for a critical interaction strength: 0.76 • Transition between Spin ½-Polarons and Spin 0-Polarons • Breakdown of a Fermi liquid • Coincides with critical strength for always having a BEC

  30. Polaron Energy vs Interaction Strength BareMolecule No final state interactionsIncluding final state interactions Mean Field Peak position |1> majority |3> majority Interaction Strength 1/kFa Molecular limit Mean Field limit Diagrammatic Monte-Carlo: N. Prokof'ev and B.V. Svistunov, PRL 99, 250201 (2007)N. V. Prokof'ev and B. V. Svistunov, PRB 77, 125101 (2008)Variational approach/T-Matrix: F. Chevy PRA 74, 063628 (2006), R. Combescot et al.,PRL 98, 180402 (2007), R. Combescot and S. Giraud, PRL 101, 050404 (2008)

  31. Building a Fermi liquid from the bottom up • Polarons are weakly interacting despite resonant interactions: •  Represent the quasi-particles in Landau’s Fermi liquid descriptionBuild a Fermi liquid from the bottom up by adding polarons Peak positoin (EF) Normal P C. Lobo et al.,PRL 97, 200403 (2006) Energy of the polaron liquid: Superfluid Energy of the superfluid at x = 1: BEC BCS Critical imbalance for transition: xc = 0.44 Critical trap population imbalance: P = 0.7

  32. Measuring the Polaron Effective Mass Majority Fermi energy in LDA: Minority potential: For harmonic trapping: On resonance: m*/m ~ 1.2 A. Recati, C. Lobo, and S. Stringari, PRA 78, 023633 (2008)

  33. Measuring the Polaron Effective Mass Trick: Excite Quadrupole Oscillation by jumping interactions from molecular side • Majority mostly unaffected, Minority needs to adjust to new environment • Out-of-phase quadrupole oscillations • Requires T/TF<0.1 for sufficient Polaron lifetime see Bruun et al., PRL 100, 240406 (2008) Hint: Far from the single polaron limit

  34. Measuring the Polaron Effective Mass Measurements from the ENS-group, Nascimbene et al., cond-mat 0907.3032 (2009): MIT • Strong dependence on polarization • Need to extrapolate to P = 100% • ENS finds

  35. Back-Action of Minority on Majority Fermi energies in LDA: Minority potential: Majority potential (“poor man’s guess”) for  Possible explanation for the observed frequency

  36. Conclusion & Outlook • Observation of Fermi Polarons in a Fermi liquid with tunable interactions • Benchmark test for many-body theories • The hydrogen atom of diagrammatic Monte-Carlo calculations – B. Svistunov • Next: Measure m*, collisional properties, Bruun et al., PRL 100, 240406 (2008) • Outlines a new strategy to study strongly interacting systems: • Explore the limit of few impuritiesWavefunction, effective parameters, renormalized interactions • First understand the N+1 limit before addressing N+M-body physics • Related problems: impurity with mass (40K in 6Li + optical lattice)immobile impurity: Anderson’s orthogonality catastrophe

  37. The team BEC 1: Andre Schirotzek Ariel Sommer Fermi 1: Cheng-Hsun Wu Ibon SantiagoDr. Peyman Ahmadi Undergraduates: Sara CampbellCaroline Figgatt Jacob Sharpe Kevin Fischer

  38. Ideal Spectra for this Fermi Liquid Initial state: Fermi sea of polarons with effective mass m* Final state: Free Fermi gas with bare mass m Shape of the spectrum: Jump of the spectrum at Size of the jump: W. Schneider, V. B. Shenoy, M. Randeria, preprint cond-mat 0903:3006 also suppl. Info. in: A. Schirotzek, C. Wu, A. Sommer, MWZ, PRL, to be published, arXiv/0902.3021

More Related