180 likes | 258 Views
第八章 受扭构件截面承载力计算. 8.1 重点与难点. 8.1.1纯扭构件. (1)试验研究分析. 1)无筋矩形截面 在纯扭矩作用下,无筋矩形截面混凝土构件开裂前具有与均质弹性材料类似的性质,截面长边中点剪应力最大,在截面四角点处剪应力为零。当截面长边中点附近最大主拉应变达到混凝土的极限拉应变时,构件就会开裂。随着扭矩的增加,裂缝与构件纵轴线成 45 0 角向相邻两个面延伸,最后构件三面开裂,一面受压,形成一空间扭曲斜裂面而破坏。自开裂至构件破坏的过程短暂,破坏突然,属于脆性破坏,抗扭承载力很低。. 2)钢筋混凝土矩形截面.
E N D
8.1 重点与难点 8.1.1纯扭构件 (1)试验研究分析 1)无筋矩形截面 在纯扭矩作用下,无筋矩形截面混凝土构件开裂前具有与均质弹性材料类似的性质,截面长边中点剪应力最大,在截面四角点处剪应力为零。当截面长边中点附近最大主拉应变达到混凝土的极限拉应变时,构件就会开裂。随着扭矩的增加,裂缝与构件纵轴线成450角向相邻两个面延伸,最后构件三面开裂,一面受压,形成一空间扭曲斜裂面而破坏。自开裂至构件破坏的过程短暂,破坏突然,属于脆性破坏,抗扭承载力很低。
2)钢筋混凝土矩形截面 当扭矩很小时,混凝土未开裂,钢筋拉应力也很低,构件受力性能类似于无筋混凝土截面。随着扭矩的增大,在某薄弱截面的长边中点首先出现斜裂缝,此时扭矩稍大于开裂扭矩Tcr。斜裂缝出现后,混凝土卸载,裂缝处的主拉应力主要由钢筋承担,因而钢筋应力突然增大。当构件配筋适中时,荷载可继续增加,随之在构件表面形成连续或不连续的与纵轴线成约35º~55º的螺旋形裂缝。扭矩达到一定值时,某一条螺旋形裂缝形成主裂缝,与之相交的纵筋和箍筋达到屈服强度,截面三边受拉,一边受压,最后混凝土被压碎而破坏。破裂面为一空间曲面。
(2)截面破坏的几种形态 1)少筋破坏 当纵筋和箍筋中只要有一种配置不足时便会出现此种破坏。斜裂缝一旦出现,其中配置不足的钢筋便会因混凝土卸载很快屈服,使构件突然破坏。破坏属于脆性破坏,类似于粱正截面承载能力时的少筋破坏。设计中通过规定抗扭纵筋和箍筋的最小配筋率来防止少筋破坏; 2)适筋破坏 如前所述,当构件纵筋和箍筋都配置适中时出现此种破坏。从斜裂缝出现到构件破坏要经历较长的阶段,有较明显的破坏预兆,因而破坏具有一定的延性。
3)部分超筋破坏 当纵筋或箍筋其中之一配置过多时出现此种破坏。破坏时混凝土被压碎,配置过多的钢筋达不到屈服,破坏过程有一定的延性,但较适筋破坏的延性差。 4)超筋破坏 当纵筋和箍筋都配置过多时出现此种破坏。破坏时混凝土被压碎,而纵筋和箍筋都不屈服,破坏突然,因,而延性差,类似于梁正截面设计时的超筋破坏。设计中通过规定最大配筋率或限制截面最小尺寸来避免。
(3)矩形截面纯扭构件的抗裂扭矩 混凝土材料既非完全弹性,也不是理想弹塑性,而是介于两者之间的弹塑性材料。 矩形截面纯扭构件的抗裂扭矩Tcr按下式计算 • 式中 0.7——考虑到混凝土非完全塑性材料的强度降低 系数; • f t——混凝土抗拉强度设计值; • Wt——截面抗扭抵抗矩,按下式计算
(4)纯扭构件抗扭承载力计算 1)矩形截面 根据变角度空间模型或扭曲破坏面极限平衡理论,矩形截面纯扭构件抗扭承载力计算公式如下 式中 fyv——抗扭箍筋抗拉强度设计值; Ast1——抗扭箍筋的单肢截面面积, s ——抗扭箍筋的间距; Acor——截面核芯部分面积,即由箍筋内表面所围成的截面面积;
fy——纵向钢筋抗拉强度设计值; Ast1——对称布置的全部纵向钢筋截面面积; U cor——截面核芯部分周长。 根据试验,当0.5≤ζ≤2.0时,破坏时纵筋和箍筋都能达到屈服。但为了稳妥起见,《规范》规定0.6≤ζ≤1.7。当ζ=0.2左右时,效果最佳。因此设计时通常取ζ=1.2~1.3。 bcor, hcor——分别为核芯部分短边及长边尺寸; ζ——纵向钢筋与箍筋的配筋强度之比;
2)T形或工字形截面 对于T形或工字形截面构件,《规范》将其划分为若干个矩形截面,然后按矩形截面分别进行配筋计算。矩形截面划分的原则是首先保证腹板截面的完整性,然后再划分受压和受拉翼缘,如图所示。划分的矩形截面所承担的扭矩,按其受扭抵抗矩与截面总受扭抵抗矩的比值进行分配。 对腹板、受压和受拉翼缘部分的矩形截面抗扭塑性抵抗矩Wtw、Wtf′和Wtf分别按下列公式计算
截面总的受扭塑性抵抗矩为 有效翼缘宽度应满足bf' ≤b+6hf'及bf ≤b+6hf的条件,且hw/b≤6。
8.1.2 矩形截面复合受扭构件 (1) 试验研究分析及主要结论 在弯矩、剪力和扭矩共同作用下,钢筋混凝土构件的受力状态极为复杂,构件破坏特征及其承载力与所作用的外部荷载条件和内在因素有关。其中外部荷载条件,通常以扭弯比 ψ(ψ=T/M)和扭剪比χ(χ=T/(Vb))表示;所谓内在条件系指构件的截面形状、尺寸、配筋及材料强度等。根据外部条件和内部条件的不同,构件可能出现以下几种破坏形态。 1)弯型破坏 在配筋适当的条件下,扭弯比较小时,裂缝首先在构件弯曲受拉的底面出现,然后向两侧面发展,破坏时底面和两侧面开裂,形成螺旋形扭曲破坏面,与之相交的纵筋及箍筋都达到受拉屈服强度,最后使处于弯曲受压的顶面压碎而破坏。
2)扭型破坏 当扭弯比和扭剪比都比较大且构件顶部纵筋少于底部纵筋时,尽管弯矩作用使顶部纵筋受压,但由于顶部纵筋少于底部纵筋,在构件顶部由扭矩产生的拉应力超过弯矩所产生的压应力,使顶部首先开裂,裂缝向两侧延伸,破坏时顶部及两侧面开裂,形成螺旋形扭曲破坏面,与之相交的钢筋达到其抗拉屈服强度,最后使构件底面受压而破坏。 3)剪扭型破坏 当剪力和扭矩都较大时,由于剪力与扭矩所产生的剪应力的相互迭加,首先在其中一个侧面出现裂缝,然后向顶面和底面扩展,使该侧面、顶面和底面形成扭曲破坏面,与之相交的纵筋与箍筋都达到其抗拉屈服强度,最后使另一侧面被压碎而破坏。
式中βt—— 剪扭构件混凝土受扭承载力降低系数,0.5≤βt≤1.0。 ІІ. 一般复合受扭构件
受扭承载力公式仍采用式 在用以上各式进行计算时,当βt <0.5时,不考虑扭矩对混凝土受剪承载力的影响,即取βt =0.5,当βt >1.0时,不考剪力对混凝土受扭承载力的影响,即取βt =1.0。由此可知混凝土抗剪与抗扭相关曲线由三条直线所组成。
(2)截面尺寸限制及最小配筋率 1)截面尺寸限制条件 为了避免超筋破坏,构件截面尺寸应满足下式要求 2)构造配筋问题 ①构造配筋的界限:当满足下式要求时,箍筋和抗扭纵筋可采用构造配筋。
②受集中荷载作用(或以集中荷载为主)的矩形截面独立构件②受集中荷载作用(或以集中荷载为主)的矩形截面独立构件 2)不进行抗扭计算的条件: (3)简化计算的条件 1)不进行抗剪计算的条件: ①一般构件
(4)截面设计的主要步骤 ①验算截面尺寸; ②验算构造配筋条件; ③ 确定计算方法,即是否可简化计算; ④ 根据M值计算受弯纵筋; ⑤ 根据V和T计算箍筋和抗扭纵筋; ⑥验算最小配筋率并使各种配筋符合《规范》构造要求。