1 / 38

3-D Film and Droplet Flows over Topography

3-D Film and Droplet Flows over Topography. Several important practical applications: e.g. film flow in the eye, electronics cooling, heat exchangers, combustion chambers, etc... Focus on: precision coating of micro-scale displays and sensors, Tourovskaia et al,

xanthus-fox
Download Presentation

3-D Film and Droplet Flows over Topography

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3-D Film and Droplet Flows over Topography Several important practical applications: e.g. film flow in the eye, electronics cooling, heat exchangers, combustion chambers, etc... Focus on: precision coating of micro-scale displays and sensors, Tourovskaia et al, Nature Protocols, 3, 2006. Pesticide flow over leaves, Glass et al, Pest Management Science, 2010. Plant disease control

  2. spin coat liquid > 50μm conformal liquid coating topographic substrate levelling period cure film solid 3D Film Flow over Topography For displays and sensors, coat liquid layers over functional topography – light-emitting species on a screen Key goal: ensure surfaces are as planar as possible – ensures product quality and functionality – BUT free surface disturbances are persistent! Stillwagon, Larson and Taylor, J. Electrochem. Soc. 1987

  3. 3D Film Flow over Topography • Key Modelling Challenges: • 3-D surface tension dominated free surface flows are very complex – Navier-Stokes solvers at early stage of development (see later) • Surface topography often very small (~100s nm) but influential – need highly resolved grids? • No universal wetting models exist • Large computational problems – adaptive multigrid, parallel computing? • Very little experimental data for realistic 3D flows.

  4. 3D Film Flow over Topography Finite Element methods not as well-established for 3-D free surface flow. Promising alternatives include Level-Set, Volume of Fluid (VoF), Lattice Boltzmann etc… but still issues for 3D surface tension dominated flows – grid resolution etc... Fortunately thin film lubrication low assumptions often valid provided: ε=H0/L0 <<1 and capillary number Ca<<1 Enables 3D flow to be modelled by 2D systems of pdes. gravity H0 inflow y s(x,y) h(x,y) L0 x outflow a

  5. 3D Film Flow over Topography Decre & Baret, JFM, 2003: Flow of Water Film over a Trench Topography Comparison between experimental free surface profiles and those predicted by solution of the full Navier-Stokes and Lubrication equations. Agreement is very good between all data. Lubrication theory is accurate – for thin film flows with small topography and inertia!

  6. 3D Film Flow over Topography Thin Film Flows with Significant Inertia Free surfaces can be strongly influenced by inertia: e.g. free surface instability, droplet coalescence,... standard lubrication theory can be extended to account for significant inertia – Depth Averaged Formulation of Veremieiev et al, Computer & Fluids, 2010. Film Flows of Arbitrary Thickness over Arbitrary Topography Need full numerical solutions of 3D Navier-Stokes equations!

  7. Depth-Averaged Formulation for Inertial Film Flows • Reduction of the Navier-Stokes equations by the long-wave approximation: Restrictions: 2. Depth-averaging stage to decrease dimensionality of unknown functions by one: , Restrictions: no velocity profiles and internal flow structure 3. Assumption of Nusselt velocity profile to estimate unknown friction and dispersion terms:

  8. Depth-Averaged Formulation for Inertial Film Flows DAF system of equations: For Re = 0 DAF ≡ LUB Boundary conditions: Inflow b.c. Outflow (fully developed flow) Occlusion b.c.

  9. Flow over 3D trench: Effect of Inertia Gravity-driven flow of thin water film: 130µm ≤ H0 ≤ 275µm over trench topography: sides 1.2mm, depth 25µm surge bow wave comet tail

  10. Accuracy of DAF approach Gravity-driven flow of thin water film: 130µm ≤ H0 ≤ 275µm over 2D step-down topography: sides 1.2mm, depth 25µm Max % Error vs Navier-Stokes (FE) Error ~1-2% for Re=50 and s0 ≤0.2 s0=step size/H0

  11. Free Surface Planarisation • Noted above: many manufactured products require free surface disturbances to be minimised – planarisation • Very difficult since comet-tail disturbances persist over length scales much larger than the source of disturbances • Possible methods for achieving planarisation include: • thermal heating of the substrate, Gramlich et al (2002) • use of electric fields

  12. Electrified Film Flow • Gravity-driven, 3D Electrified film flow over a trench topography • Assumptions: • Liquid is a perfect conductor • Air above liquid is a perfect dielectric • Film flow modelled by Depth Averaged Form • Fourier series separable solution of Laplace’s equation • for electric potential coupled to film flow by Maxwell free • surface stresses.

  13. Electrified Film Flow • Effect of Electric Field Strength on Film Free Surface • No Electric Field With Electric Field • Note: Maxwell stresses can planarise the persistent, comet-tail disturbances.

  14. Computational Issues • Real and functional surfaces are often extremely complex. Multiply-connected circuit topography: Lee, Thompson and Gaskell, International Journal for Numerical Methods in Fluids, 2008 Need highly resolved grids for 3D flows Flow over a maple leaf topography Glass et al, Pest Management Science, 2010

  15. Adaptive Multigrid Methods • Full Approximation Storage (FAS) Multigrid methods very efficient. • Spatial and temporal adaptivity enables fine grids to be used only where they are needed. • E.g. Film flow over a substrate with isolated square, circular and diamond-shaped topographies • Free Surface Plan View of Adaptive Grid

  16. Parallel Multigrid Methods • Parallel Implementation of Temporally Adaptive Algorithm using: • Message Passing Interface (MPI) • Geometric Grid Partitioning • Combination of Multigrid O(N) efficiency and parallel speed up very powerful!

  17. 3D FE Navier-Stokes Solutions Lubrication and Depth Averaged Formulations invalid for flow over arbitrary topography and unable to predict recirculating flow regions As seen earlier important to predict eddies in many applications: E.g. In industrial coating

  18. 3D FE Navier-Stokes Solutions Mixing phenomena E.g. Heat transfer enhancement due to thermal mixing, Scholle et al, Int. J. Heat Fluid Flow, 2009.

  19. Substrate Bath 3D FE Navier-Stokes Solutions Mixing in a Forward Roll Coater Due to Variable Roll Speeds

  20. 3D FE Navier-Stokes Solutions • Commercial CFD codes still rather limited for these type of problems • Finite Element methods are still the most accurate for surface tension dominated free surface flows – grids based on Arbitrary Lagrangian Eulerian ‘Spine’ methods • Spine Method for 2D Flow Generalisation to 3D flow

  21. 3D FE Navier-Stokes vs DAF Solutions Gravity-driven flow of a water film over a trench topography: comparison between free surface predictions

  22. 3D FE Navier-Stokes Solutions Gravity-driven flow of a water film over a trench topography: particle trajectories in the trench 3D FE solutions can predict how fluid residence times and volumes of fluid trapped in the trench depend on trench dimensions

  23. Droplet Flows: Bio-pesticides • Droplet Flow Modelling and Analysis

  24. Application of Bio-pesticides ChangingEU legislation is limiting use of chemically active pesticides for pest control in crops. Bio-pesticides using living organisms (nematodes, bacteria etc...) to kill pests are increasing in popularity but little is know about flow deposition onto leaves Working with Food & Environment Research Agency in York and Becker Underwood Ltd to understand the dominant flow mechanisms

  25. Nematodes • Nematodes are a popular bio-pesticide control • method - natural organisms present in soil • typically up to 500 microns in length. • Aggressive organisms that attack the pest by entering body openings • Release bacteria that stops pest feeding – kills the pest quickly • Mixed with water and adjuvants and sprayed onto leaves

  26. What do we want to understand? • Why do adjuvants improve effectiveness – reduced • evaporation rate? • How do nematodes affect droplet size distribution? • How can we model flow over leaves? • How does impact speed, droplet size and orientation affect droplet motion?

  27. Droplet spray evaporation time: effect of adjuvant

  28. Droplet size distribution for bio-pesticides Matabi 12Ltr Elegance18+ knapsack sprayer • Teejet XR110 05 nozzle with 0.8bar

  29. VMD of the bio-pesticide spray depending on the concentration of adjuvant addition of bio-pesticide does not affect Volume Mean Diameter of the spray

  30. Droplet flow over a leaf: simple theory 2nd Newton’s law in x direction: theoretical expressions from Dussan (1985): Stokes drag: Contact angle hysteresis: Velocity: Relaxation time: Terminal velocity: Volume of smallest droplet that can move:

  31. Droplet flow over a leaf: simple theory vs. experiments 47V10 silicon oil drops flowing over a fluoro-polymer FC725 surface: Dussan (1985) theory: Podgorski, Flesselles, Limat (2001) experiments: droplet flow is governed by this law: Le Grand, Daerr & Limat (2005), experiments:

  32. Droplet flow over a leaf (θ=60º): effect of inertia For: V=10mm3, R=1.3mm, terminal velocity=0.22m/s Lubrication theory Depth averaged formulation

  33. Droplet flow over a leaf (θ=60º): effect of inertia For: V=20mm3 R=1.7mm terminal velocity=0.45m/s Lubrication theory Depth averaged formulation

  34. Droplet flow over a leaf (θ=60º): summary of computations

  35. Droplet flow over a leaf: theory shows small effect of initial velocity Velocity: Initial velocity: Relaxation time:

  36. Droplet flow over a leaf: computation of influence of initial condition V=10mm3 R=1.3mm a=0.22m/s Bosinθ=0.61 v0=0.69m/s Bosinθ init =1.57 V=10mm3 R=1.3mm a=0.22m/s Bosinθ=0.61 v0=1.04m/s Bosinθ init =2.49 this is due to the relaxation of the droplet’s shape

  37. Droplet flow over (θ=60º) vs. under (θ=120º) a leaf: computation V=20mm3 R=1.7mm a=0.45m/s Bosinθ=0.99 θ=60º V=20mm3 R=1.7mm a=0.45m/s Bosinθ=0.99 θ=120º

  38. Bio-pesticides: initial conclusions • Addition of carrier material or commercial product (bio-pesticide) does not affect the Volume Mean Diameter of the spray. • Dynamics of the droplet over a leaf are governed by gravity, Stokes drag and contact angle hysteresis; these are verified by experiments. • Droplet’s shape can be adequately predicted by lubrication theory, while inertia and initial condition have minor effect. • Simulating realistically small bio-pesticide droplets is extremely computationally intensive: efficient parallelisation is needed ( see e.g. Lee et al (2011), Advances in Engineering Software) BUT probably does not add much extra physical understanding!

More Related