220 likes | 382 Views
比例的意义. 性质. 和. 执教者:徐美珍. 准备题: 在下面各比中,把相等的比用线连起来。 5︰8 4︰6 12︰20 10︰25. 1. 5. 2. 1.5︰2.5 —︰— 1︰1— 0.6︰1.5. 12. 3. 2. 例 1 有两棵树(如下图),写出它们的高度比和重量比,并求出比值。. 30 分米. 30︰36. 5 / 6. 36 分米. 50︰60. 5 / 6. 50 千克. 30︰36 = 50︰60. 60 千克.
E N D
比例的意义 性质 和 执教者:徐美珍
准备题: 在下面各比中,把相等的比用线连起来。 5︰8 4︰6 12︰20 10︰25 1 5 2 1.5︰2.5 —︰— 1︰1— 0.6︰1.5 12 3 2
例1 有两棵树(如下图),写出它们的高度比和重量比,并求出比值。 30分米 30︰36 5 / 6 36分米 50︰60 5 / 6 50千克 30︰36=50︰60 60千克
例1 有两棵树(如下图),写出它们的高度比和重量比,并求出比值。 30分米 30︰36 5/6 36分米 50︰60 5/6 50千克 30︰36=50︰60 60千克 30 50 或 —— = —— 36 60 . . . . . 表示两个比相等的式子叫做比例。
准备题: 在下面各比中,把相等的比用线连起来。 5︰8 4︰6 12︰20 10︰25 1 5 2 1.5︰2.5 —︰— 1︰1— 0.6︰1.5 12 3 2 5 2 1 5︰8=—︰— 4︰6=1︰1— 12︰20=1.5︰2.5 10︰25=0.6︰1.5 12 3 2
想一想: 1、判断两个比能不能组成比例,关键看什么? 要看这两个比的比值是否相等。 2、如果不能很快看出两个比的比值是否相等,怎么办? 例如:要判断8︰10与28︰35能不能组成比例。 先分别求出这两个比的比值。
想一想: 1、判断两个比能不能组成比例,关键看什么? 要看这两个比的比值是否相等。 2、如果不能很快看出两个比的比值是否相等,怎么办? 例如:要判断8︰10与28︰35能不能组成比例。 4 先分别求出这两个比的比值, 8 ︰10=—— (或0.8) 5 4 28︰35=—— (或0.8) 5 因为比值相等,所以8︰10=28︰35
想一想: 1、判断两个比能不能组成比例,关键看什么? 要看这两个比的比值是否相等。 2、如果不能很快看出两个比的比值是否相等,怎么办? 例如:要判断8︰10与28︰35能不能组成比例。 4 先分别求出这两个比的比值, 8 ︰10=—— (或0.8) 5 4 28︰35=—— (或0.8) 5 因为比值相等,所以8︰10 = 28︰35 28 8 或 — = — 10 35
下面哪几组中的两个比可以组成比例?把组成的比例写出来。下面哪几组中的两个比可以组成比例?把组成的比例写出来。 10︰12 和 35︰42 —︰— 和 0.4︰0.15 —︰0.75 和 1—︰7 4︰3.6 和 0.5︰4.5 2 1 5 4 × 比值相等都是5 / 6 10︰12=35︰42 1 1 8 6 比值相等都是1 / 6
下面哪几组中的两个比可以组成比例?把组成的比例写出来。下面哪几组中的两个比可以组成比例?把组成的比例写出来。 10︰12 和 35︰42 —︰— 和 0.4︰0.15 —︰0.75 和 1—︰7 4︰3.6 和 0.5︰4.5 2 1 5 4 比值都是5 / 6 × 10︰12=35︰42 1 1 8 6 × 比值都是1 / 6 1 1 —︰0.75=1—︰7 8 6
比和比例有什么区别? 比是表示两个数相除,是一个式子,只有两个项。 比例是表示两个比相等的式子,是一个等式,有四个数。
比例的各部分名称是怎么规定的? 30 ︰ 36 = 50 ︰ 60 内项 外项 两个外项的积是30×60=1800 所以30×60=36×50 两个内项的积是36×50=1800 外项相乘 内项相乘
比例的各部分名称是怎么规定的? 30 ︰ 36 = 50 ︰ 60 内项 外项 两个外项的积是30×60=1800 所以30×60=36×50 两个内项的积是36×50=1800 外项相乘 内项相乘 30 60 —— = —— 等号两端的分子和分母分别交叉相乘,它们的积相等。 36 50
试一试: — = — —︰— = —︰— 8︰25=40︰125 0.5 0.2 0.5×2 =( )×( ) 5 0.2 5 2 2 1 3 3 2 — ×( )=( )×( ) 5 2 5 4 5 ( )×( )=( )×( )
试一试: — = — —︰— = —︰— 8︰25=40︰125 0.5 0.2 0.5×2 =( )×( ) 5 0.2 5 2 2 1 3 3 1 2 3 3 — ×( —)=(—)×(—) 5 2 5 4 4 2 5 5 ( )×( )=( )×( ) 8 125 25 40
在比例里,两个外项的积等于两个内项的积。这叫做在比例里,两个外项的积等于两个内项的积。这叫做 比例的基本性质
用四个数3、4、6、8,能组成哪些比例? 如:3︰4=6︰8 8︰4=6︰3 6︰3=8︰4 6︰8=3︰4 3︰6=4︰8 4︰8=3︰6 8︰6=4︰3 4︰3=8︰6
根据比例的基本性质,如果已知比例中的任何三项,就可以求出另外一个未知项。根据比例的基本性质,如果已知比例中的任何三项,就可以求出另外一个未知项。 求比例中的未知项,叫做解比例
例2、 解比例。8︰12=x︰45 解: 12x=8×45 这是根据什么?
例2、 解比例。8︰12=x︰45 解: 12x=8×45 这是根据什么? 8×45 x=——— 12 x=30
x 3.2 例3、解比例。 — = — 0.5 20 解: 20x=( )×( ) 0.5 3.2 x=( )÷( ) 1.6 20 x=( ) 0.08
练习: 解下面的比例。 1、45︰18=x︰100 2、x︰—=1—︰6 3、— = — 4、— = — x=250 2 1 x=1 / 6 3 2 2 9 x=36 x 8 x 1.2 x=0.4 25 75