1 / 62

Complexities for Generalized Models of Self-Assembly

Complexities for Generalized Models of Self-Assembly. Gagan Aggarwal Stanford University Michael H. Goldwasser St. Louis University Ming-Yang Kao Northwestern University Robert T. Schweller Northwestern University. Some results were obtained independantly by Cheng, Espanes 2003.

Download Presentation

Complexities for Generalized Models of Self-Assembly

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Complexities for Generalized Models of Self-Assembly Gagan Aggarwal Stanford University Michael H. Goldwasser St. Louis University Ming-Yang Kao Northwestern University Robert T. Schweller Northwestern University Some results were obtained independantly by Cheng, Espanes 2003

  2. Tile Model of Self-Assembly (Rothemund, Winfree STOC 2000) Tile System: t : temperature, positive integer G: glue function T: tileset s: seed tile

  3. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  4. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  5. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  6. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  7. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  8. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  9. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  10. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  11. How a tile system self assembles G(y,y) = 2 G(g,g) = 2 G(r, r) = 2 G(b,b) = 2 G(p,p) = 1 G(w,w) = 1 t = 2 T =

  12. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  13. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  14. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  15. New Models • Multiple Temperature Model • temperature may go up and down • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y • Multiple Tile Model • tiles may cluster together before being added • Unique Shape Model • unique shape vs. unique supertile

  16. Focus of Talk • Multiple Temperature Model • Adjust temperature during assembly • Flexible Glue Model • Remove the restriction that G(x, y) = 0 for x!=y Goal: Reduce Tile Complexity

  17. Our Tile Complexity Results Multiple temperature model: (our paper) k x N rectangles: beats standard model: (our paper) Flexible Glue: N x N squares: (our paper) (Adleman, Cheng, Goel, Huang STOC 2001) beats standard model:

  18. Building k x N Rectangles k-digit, base N(1/k) counter: k N

  19. Building k x N Rectangles k-digit, base N(1/k) counter: k N Tile Complexity:

  20. Build a 4 x 256 rectangle: t = 2 S3 0 S2 0 S1 0 S g g g p C0 C1 C2 C3 S

  21. Build a 4 x 256 rectangle: t = 2 S3 0 g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 0 S3 0 S2 0 0 S1 g g p S C1 C2 C3

  22. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 S3 0 0 S2 0 0 S1 0 0 p S C1 C2 C3

  23. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 S3 0 0 S2 0 0 g g S1 0 0 0 1 S C1 C2 C3

  24. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 g S1 0 S g g g p C0 C1 C2 C3 S3 0 0 0 0 S2 0 0 0 0 S1 0 0 0 1 p S C1 C2 C3 C0 C1 C2 C3

  25. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 S g g g p 2 3 C0 C1 C2 C3 S3 0 0 0 0 0 0 S2 0 0 0 0 0 0 S1 0 0 0 1 1 1 p S C1 C2 C3 C0 C1 C2 C3

  26. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 p S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  27. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  28. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  29. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P R S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  30. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P R … S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

  31. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 S3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 … S1 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P R 0 0 S C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2

  32. Build a 4 x 256 rectangle: t = 2 g g 0 1 0 1 S3 0 p r g S2 0 0 1 2 3 0 0 1 2 g S1 0 p r S P R g g g p 3 0 2 3 p r C0 C1 C2 C3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 P 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 P 3 3 P R 0 0 0 1 1 1 1 2 2 2 2 3 3 3 P C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3 C0 C1 C2 C3

  33. Building k x N Rectangles k-digit, base N(1/k) counter: k N Tile Complexity:

  34. 2-temperature model t= 4 3 1 3 3

  35. 2-temperature model t = 4 6

  36. 2-temperature model (our paper) Kolmogorov Complexity (Rothemund, Winfree STOC 2000) Beats Standard Model (our paper)

  37. Assembly of N x N Squares

  38. Assembly of N x N Squares N - k k N - k k

  39. Assembly of N x N Squares Complexity: N - k X (Adleman, Cheng, Goel, Huang STOC 2001) k N - k Y k

  40. N x N Squares --- Flexible Glue Model Kolmogorov lower bounds: Standard (Rothemund, Winfree STOC 2000) Flexible Standard Glue Function Flexible Glue Function a b c d e f a 1 - - - - - b - 0 - - - - c - - 3 - - - d - - - 2 - - e - - - - 2 - f - - - - - 1 a b c d e f a 1 0 2 0 0 1 b 0 0 1 0 1 0 c 0 0 3 0 1 1 d 2 2 2 2 0 1 e 0 0 0 1 2 1 f 1 1 2 2 1 1

  41. N x N Square --- Flexible Glue Model N – log N seed row log N

  42. N x N Square --- Flexible Glue Model N – log N Complexity: seed row log N

  43. N x N Square --- Flexible Glue Model goal: - seed binary counter to a given value - 0 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 1 2 log N

  44. N x N Square --- Flexible Glue Model 5 3 3 3 4 4 4 4 4 4 5 5 5 5 . . . 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

  45. N x N Square --- Flexible Glue Model key idea: 5 0 0 1 1 0 1 1 0 0 1 1 1 0 | | | | | | | | | | | | | 5 3 3 3 4 4 4 4 4 4 5 5 5 5 . . . 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

  46. N x N Square --- Flexible Glue Model G(b4, p5) = 1 G(b4, w5) = 0 5 p5 5 5 5 5 w5 b4 1 2 3 4 5

  47. N x N Square --- Flexible Glue Model 5 • given B = 011011 110101 010111 … • encode B into glue function p5 b4 4 p0 p1 p2 p3 p4 p5 b0 0 1 1 0 1 1 b1 1 1 0 1 0 1 b2 0 1 0 1 1 1 b3 0 0 1 0 1 0 b4 0 0 0 0 0 1 b5 1 1 1 1 1 0 B = 011011 110101 010111 …

  48. N x N Square --- Flexible Glue Model • build block • Complexity: 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1

  49. 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 1 0 1 1 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 1

  50. N – log N 2 x log N block log N

More Related