1 / 20

Trigonometric graphs

Trigonometric graphs. Don’t forget to label the axes!. y. 1. x. 0 o. 90 o. 180 o. 360 o. 270 o. -1. Graph of Sine. y = sin x. Plot the ‘special’ points!. General Form: y = a sin( b x)+ c. a affects the amplitude b affects the frequency (no. of cycles)

xanti
Download Presentation

Trigonometric graphs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Trigonometric graphs

  2. Don’t forget to label the axes! y 1 x 0o 90o 180o 360o 270o -1 Graph of Sine • y = sin x Plot the ‘special’ points!

  3. General Form: y = asin(bx)+c • a affects the amplitude • b affects the frequency (no. of cycles) • c shifts the graph up/down

  4. 0o 90o 180o 360o 270o Exercise 1: y = sin(x) + 3 y 4 3 2 1 x -1

  5. 0o 90o 180o 360o 270o Exercise 1: y = sin(x) − 2 y 1 x − 1 −2 −3

  6. 0o 90o 180o 360o 270o Effect of ‘a’ y 2 • y = sin x and y = 2sin x 1 x −1 −2

  7. y 1 x 0o 90o 180o 360o 270o -1 Effect of ‘b’ • y = sin x and y = sin2x

  8. y 1 x 0o 90o 180o 360o 270o -1 Effect of Modulus • y = sin x and y = |sin x|

  9. Don’t forget to label the axes! y 1 x 0o 90o 180o 360o 270o -1 Graph of Cosine • y = cos x Plot the ‘special’ points!

  10. Don’t forget to label the axes! y 1 x 0o 90o 180o 360o 270o -1 Graph of Tangent Draw the asymptotes! • y = tan x Plot the ‘special’ points! Notice that the points at y = 1 are plotted in the middle of the two angles around them!

  11. Know that the amplitude is 2! Know that the graph is translated by 1 unit downwards! Don’t forget to label the axes! y 2 x 0o 90o 180o 360o 270o -2 Draw the reference line y = -1 Example: y = 2cos x – 1 Plot the ‘special’ points! This is the graph of y = 2cos x

  12. y 2 x 0o 90o 180o 360o 270o -2 Example: y = 2cos x – 1 1 -3

  13. Know that the graph is stretched by factor 3 along the y axis! Know that the graph is translated by 6 units downwards! Don’t forget to label the axes! y 3 x 0o 90o 180o 360o 270o -3 Notice that the reference points are now 3 and -3! Example: y = 3tan x – 6 Draw the asymptotes! Plot the ‘special’ points! Notice that the points at y = 1 are plotted in the middle of the two angles around them!

  14. y 3 x 0o 90o 180o 360o 270o -3 -9 Draw the reference line y = -6 Example: y = 3tan x – 6

  15. y 3 0o 90o 180o 360o 270o -3 Example: y = 3tan x – 6 x -9

  16. y 3 0o 90o 180o 360o 270o -3 Example: y = 3tan x – 6 x -9

  17. Don’t forget to label the axes! y 2 x 0o 90o 180o 360o 270o -2 Plotting two graphs on the same axes • y = 2sin x and y = cos x Plot the ‘special’ points!

  18. y 2 x 0o 90o 180o 360o 270o -2 Plotting two graphs on the same axes • y = 2sin x and y = cos x This is the graph of y = 2sinx

  19. y 2 1 x 0o 90o 180o 360o 270o -1 -2 Plotting two graphs on the same axes • y = 2sin x and y = cos x

  20. Label the two graphs! y 2 1 x 0o 90o 180o 360o 270o -1 -2 Plotting two graphs on the same axes • y = 2sin x and y = cos x y = 2sinx y = cosx

More Related