1 / 32

Signals and Systems (Lab) Resource Person : Hafiz Muhammad Ijaz

Signals and Systems (Lab) Resource Person : Hafiz Muhammad Ijaz

xenia
Download Presentation

Signals and Systems (Lab) Resource Person : Hafiz Muhammad Ijaz

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Signals and Systems (Lab) Resource Person : Hafiz Muhammad Ijaz COMSATS Institute of Information Technology Lahore Campus

  2. EXPERIMENT # 8 Fourier Transform and its Properties.

  3. In Previous Lab… • Introduction to Fourier Series • Complex Exponential Fourier Series Representation • Trigonometric Fourier series Representation • Properties of Fourier series • Linearity • Time Shifting • Time Reversal • Signal Multiplication • Parseval’s Identity

  4. In this Lab… • Introduction to Fourier Transform • How to compute Fourier Transform and Inverse Fourier Transform using MATLAB? • Implementation of Fourier Transform Pairs • Properties of Fourier Transform • Linearity • Time Shifting • Frequency Shifting • Scaling in Time and Frequency • Time Reversal • Fourier Transform of the Even and Odd Part of a Signal • Convolution in Time and Frequency • Parseval’s Theorem

  5. Introduction to Fourier Transform • The mathematical expression of Fourier transform is • The mathematical expression of Inverse Fourier transform is • The Fourier transform of a signal is called (frequency) spectrum.

  6. Example: • Plot the Fourier transform of the continuous time signal • x(t) = cos(t)

  7. Solution: syms t w x=cos(t) X=fourier (x,w) w1=[-4:0.05:4] X=subs(X,w,w1) for i=1:length(X) if X(i) == inf X(i) = 1 end end plot(w1,X) legend ('F[cos(t)]')

  8. Example: • Plot the Fourier transform of the signal • x(t) = sin(πt) / (πt)

  9. Example: Compute the Fourier transform of the function Solution: syms t w x=exp(-t^2); fourier(x) Xf=int(x*exp(-j*w*t),t,-inf,inf) xt=ifourier(Xf,t) • ans =pi^(1/2)/exp(w^2/4) • Xf =pi^(1/2)/exp(w^2/4) • xt= 1/exp(t^2)

  10. Fourier Transform Pairs • Verify the Fourier transform pair • where is a rectangular pulse of duration, given by

  11. Solution: syms t w T x=heaviside(t+T/2)-heaviside(t-T/2); xx=subs(x,T,4); subplot(2,1,1) ezplot(xx,[ -4 4]) legend('x(t)') x1=fourier(x,w) ww=[-10:.1:-.1 .1:.1:10]; X=subs(x1,w,ww) X=subs(X,T,4); subplot(2,1,2) plot(ww,X) xlabel('\Omega rad/s') legend('X(\Omega)')

  12. Properties of Fourier Transform

  13. Time and Frequency Shifting • Time shifting Property can be written as • Frequency shifting Property is given as

  14. Solution syms t w x=cos(t); t0=2; xt0=cos(t-t0); Left=fourier(xt0,w) X=fourier(x,w); Right=exp(-j*w*t0)*X • syms t w • x=cos(t); • w0=2; • Le=exp(j*w0*t)*x; • Left=fourier(Le,w) • X=fourier(x,w); • Right=subs(X,w,w-w0)

  15. Scaling in Time and Frequency • Scaling in Time domain is given as • Scaling in frequency can be written as

  16. Solution syms t w b=3; x=heaviside(t+1)-heaviside(t-1); ezplot(x,[-2 2]); legend('x(t)')

  17. FT of x(t)… X=fourier(x,w); ezplot(X,[-40 40]); legend('X(\Omega)') xlabel('\Omega')

  18. Signal x(bt) , b=3 xb=subs(x,t,b*t); ezplot(xb, [-2 2]); legend('x(bt), b=3');

  19. FT of x(bt) Xb=fourier(xb,w); ezplot(Xb, [-40 40]) legend('F(x(bt))') xlabel('\Omega')

  20. X(bw)… Ri=subs(X,w,w/b); Right=(1/abs(b))*Ri; ezplot(Right,[-40 40]); legend('(1/|b|)*X(\Omega/b)') xlabel('\Omega')

  21. Time Reversal Verify the time reversal property for the signal x(t)=t u(t)

  22. Solution syms t w x=t*heaviside(t); X=fourier(x,w) ; Right=subs(X,w,-w) x_t=subs(x,t,-t); Left=fourier(x_t,w) Right = - 1/w^2 - pi*i*dirac(w, 1) Left = - 1/w^2 + pi*i*dirac(-w, 1)

  23. Duality • Satisfy the Duality property for the signal mentioned below.

  24. Solution syms t w x=exp(-t)*heaviside(t); X=fourier(x) Xt=subs(X,w,t) Left=fourier(Xt) x_w=subs(x,t,-w); Right=2*pi*x_w Left = 2*pi*heaviside(-w)*exp(w) Right = 2*pi*heaviside(-w)*exp(w)

  25. Differentiation in Time and Frequency • For the signal x(t) • Differentiation in time domain is given as • Differentiation in Frequency domain can be written as

  26. Solution syms t w x=exp(-3*t)*heaviside(t); der=diff(x,t); Left=fourier(der,w) X=fourier(x,w); Right=j*w*X Left=fourier(t*x,w) der=diff(X,w); Right=j*der Left =1 - 3/(i*w + 3) Right =(i*w)/(i*w + 3) Left =1/(i*w + 3)^2 Right =1/(i*w + 3)^2

  27. Integration • For a given signal x(t) • Integration property can be written as • Satisfy the integration property for

  28. Solution syms t r w x=exp(r)*heaviside(-r)+exp(-r)*heaviside(r); integ=int(x,r,-inf,t); Left=fourier(integ,w) X=fourier(x,w); X0=subs(X,w,0); Right=(1/(j*w))*X+pi*X0*dirac(w) • Left = 2*pi*dirac(w) + ((1/(- 1 + w*i) - 1/(1 + w*i))*i)/w • Right = 2*pi*dirac(w) + ((1/(- 1 + w*i) - 1/(1 + w*i))*i)/w

  29. Convolution in Time and Frequency

  30. Solution syms t w x=exp(-t^2); Et=int((abs(x))^2,t,-inf,inf) ; eval(Et) X=fourier(x,w); Ew=(1/(2*pi))*int((abs(X))^2,w,-inf,inf); eval(Ew) ans =1.2533 ans =1.2533

  31. Parseval’s Theorem • Parsvel’s Identity can be written as • Satisfy the Parsvel’s Identity using input signal

More Related