130 likes | 242 Views
HWW mnmn. R.González , J.Cuevas,J.Fernández , J.Vizán , L.Lloret , C.Jordá , R.Vilar , J.Duarte ……. Multivariate analysis : BDT. pT of the muons Missing Et Invariant Mass Dphi Transverse mass Dphi ( mu,MET ) Eta of the muons NTracks SumEt. MET. Usual variables.
E N D
HWWmnmn R.González, J.Cuevas,J.Fernández, J.Vizán, L.Lloret, C.Jordá, R.Vilar, J.Duarte…….
Multivariateanalysis: BDT • pT of themuons • Missing Et • InvariantMass • Dphi • Transversemass • Dphi(mu,MET) • Eta of themuons • NTracks • SumEt MET Usual variables Other variables Mtmax Ptmin Dphi(m,MET) min • Selectionstrategybasedonmultivariateanalysis: BDT • Variables usedfor training the BDT: (after Muon Selection)
-Jet veto notapplied in thisbdtanalysissome variables providing jet informationusedinstead Sum of the energy of all jets in the event with Et>15 GeV, eta<2.4 Number of trackswithsomequalitycuts: -pt>3 GeV -N hits > 5 - |zTrack-zVer|<0.4 cm • Mostimportant variables toreject • ttbarbackground • Variables alreadyincorporatedtothe BDT studyfor CMS Note (seeappendix) • Definition of Ntracks variable willbeupdated in 21X (new qualitycutsfortracksstudied Nhits> 8 , |zTrack-zVer|<0.2 cm). • Study in detail jets withtracks, particleflow, jet Energycorrections… Plansfor 21x
BDT Ranking result (top variable isbestranked) --------------------------------------------------- Rank : Variable : Variable Importance --------------------------------------------------- 1 : Dphill : 2.819e-01 2 : Mtmin : 1.573e-01 3 : etalepmin : 8.728e-02 4 : MET : 7.767e-02 5 : etalepmax : 6.933e-02 6 : InvMass : 6.621e-02 7 : ptlepmin : 4.916e-02 8 : DphiLepMetmin : 4.636e-02 9 : SumEt : 4.154e-02 10 : DphiLepMetmax : 3.520e-02 11 : Mtmax : 3.438e-02 12 : Ntracks : 3.290e-02 13 : ptlepmax : 2.069e-02 TMVA output Training againstttbar Rank : Variable :Variable Importance -- ------------------------------------------------------------- 1 : Ntracks : 2.591e-01 2 : SumEt : 2.091e-01 3 : Mtmin : 8.163e-02 4 : ptlepmin : 8.008e-02 5 : InvMass : 7.526e-02 6 : Dphill : 6.305e-02 7 : etalepmax : 4.709e-02 8: DphiLepMetmin : 3.763e-02 9 : etalepmin : 3.607e-02 10 : Mtmax : 3.565e-02 11 : MET : 3.057e-02 12 : DphiLepMetmax : 2.759e-02 13 : ptlepmax : 1.722e-02 • Ntracks and SumEt • mostuseful variables to • rejecttt • Dphimostuseful variable toreject WW Training against WW Overtraining checked by TMVA Using independent samples Distribution of the variables formainbackgrounds WW and ttbarhavediferentshape 2 independent trainings tried: against WW and ttbar Example: training at mH=160 GeV
Signal Mh=160 WW X axis output from a BDT trainedagainst WW Y axis output from a BDT trainedagainsttbar ttbar DY Firstapproach circular cutaround theregionwithhighest s/b • 3 training points : 130, 160, 190 • the resulting functions are combined into a bidimensional one • This method Provides also good rejection against other backgrounds like Z+jets, w+jets… R=sqrt( (x0-bdt1)2 + (y0-bdt2)2)
ExampleformH=160 Distributions of Some variables before and afterapplyingthe BDT cut (maximizingsignificance) InvMass MET InvMass<50 Example of usingthe BDT toestimatecutstobeappliedon a sequentialcutanalysis. Cutvaluesused In thesequential analysis MET>45 (MET>48) dPhi dPhi<1.2(69º) (dPhi<57º) Ptmax Ptmin NTracks Ptmax>30 Ptmax<50 (Ptmax>28) (Ptmax<50) Ptmin>25 (Ptmin>25) Ntracks<10
mH=160 GeV 5s significance around 160 almost achieved with mumu channel ONLY Numbers including fake rate estimation background vs signal events for various cuts on BDT function.
Preliminary results 21x samples (10 TeV) HWW 165: RelVal (CMSSW_2_1_9) TTbar: /TauolaTTbar/Summer08_IDEAL_V9_AODSIM_v1/AODSIM Zmumu: /Zmumu/Summer08_IDEAL_V9_AODSIM_v1/AODSIM low statistics for tt HWW165
HWW 165 HWW 165 TTbar CMSSW_1_6_12 CMSSW_2_1_9 HWW 165 16X: @14 TeV 21X: @10 TeV Zmumu: CSA07 Vs.: HWW 165: RelVal (CMSSW_2_1_9) TTbar: /TauolaTTbar/Summer08_IDEAL_V9_AODSIM_v1/AODSIM Zmumu: /Zmumu/Summer08_IDEAL_V9_AODSIM_v1/AODSIM
Analysis based in sequential cuts for 21x →Started Kinematic variables performingwell Stilltoincludethe pre-selection HWW 165 Relative efficiencies w.r.t. the previous cut at each level
BACKGROUND ESTIMATION WITH DATA Estimation of the number of events from data in the 0 jet bin using soft muons(*), coming from B semileptonic decays in b jets produced in top decays, so basically, estimation of top-antitop fraction, from “well measured” 2 and >=2 jet bins, extrapolate to 0 jet bin. • Simple selection of events: • HWW 2 m selection/isolation • MET>50 GeV • |Mll-MZ|<20 GeV • presence of a soft muon (pT>5 GeV, no isolation required) • With this simple selection, still presence of tW, W+jets, Z+jets and WW in most relevant bins (0-4), at the level of 10-15%. tt dimuons, chowder 1_6 (*) see talk by Dmytro Kovalsky http://indico.cern.ch/getFile.py/access?contribId=2&resId=1&materialId=slides&confId=42770
Next steps for 21x Better estimation of the fake using QCD samples (large statistics) Better estimation of the background contamination with data driven methods Study of muon identification and isolation Improve results in low mass region ….
BACKUP • Trainings y resultados 130,190