1 / 5

O 是圓心

定理 11.3.1 若半徑 OP ⊥ AP , 則 AP 是圓的切線。 [ 切線⊥半徑的逆定理 ]. O 是圓心. 定理 11.3.2 若 ∠ TAB = ∠ ACB , 則 TA 是圓的切線。 [ 交錯弓形的圓周角的 逆定理 ]. 與切線有關的證明. . 例. 與切線有關的證明. . 圖中, AB 是直徑,∠ BAC = ∠ ATC , BCT 是直線。證明 TA 是圓在 A 點的切線。. ∠ ACB = 90  (半圓上的圓周角). ∠ CAT + ∠ ATC = ∠ ACB

yachi
Download Presentation

O 是圓心

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 定理 11.3.1 若半徑 OP⊥ AP, 則 AP 是圓的切線。 [ 切線⊥半徑的逆定理 ] O 是圓心 定理 11.3.2 若 ∠TAB = ∠ACB, 則 TA 是圓的切線。 [交錯弓形的圓周角的 逆定理] 與切線有關的證明 

  2. 與切線有關的證明  圖中,AB 是直徑,∠BAC = ∠ATC,BCT 是直線。證明 TA 是圓在 A 點的切線。 ∠ACB = 90(半圓上的圓周角) ∠CAT + ∠ATC = ∠ACB (△ 外角) ∠CAT + ∠BAC = 90 ∠BAT = 90 ∴ TA 是圓在 A 點的切線。 (切線⊥半徑的逆定理)

  3. 定理 11.4.1 若 ∠A + ∠C = 180或 ∠B + ∠D = 180, 則 A、B、C 和D 共圓。 [內對角互補 ] 定理 11.4.2 若 x = y,則 A、B、C 和D 共圓。 [外角等於內對角] 共圓點的證明 

  4. 定理 11.4.3 若 x = y,則 A、B、C 和D 共圓。 [同弓形內的圓周角的逆定理] 共圓點的證明 

  5. 共圓點的證明  圖中, AD與 BE 相交於 C。證明 A、B、D 和E 四點共圓。 ∠CED + ∠CDE = ∠ACE (△ 外角) ∠CED + 70= 98 ∠CED = 28 = ∠BAC ∴ A、B、D 和E 四點共圓。 (同弓形內的圓周角的逆定理)

More Related