1 / 37

图论的介绍

图论的介绍. 哥尼斯 堡 七桥问題 ( Bridges of Koenigsberg ). 能不能走过每一个桥 刚 好一次并且回到原來的地方?. 欧拉路径 解決哥尼斯保七桥问題. 原來是一 笔画问题 啊!. 数学 家 欧拉 (Euler, 1707-1783) 于 1736 年 严格的证明了上述 哥尼斯堡 七桥问题无解 , 并且 由此 开创 了 图论 的典型 思维 方式及 论证 方式. 实际生活中的图论 G raph Model. 电路模拟. 例: Pspice 、 Cadence 、 ADS…. Pspice. Cadence. 交通网络. 航空网络 !.

yale
Download Presentation

图论的介绍

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 图论的介绍

  2. 哥尼斯堡七桥问題(Bridges of Koenigsberg) 能不能走过每一个桥刚好一次并且回到原來的地方?

  3. 欧拉路径解決哥尼斯保七桥问題 原來是一笔画问题啊! 数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡七桥问题无解,并且由此开创了图论的典型思维方式及论证方式

  4. 实际生活中的图论Graph Model

  5. 电路模拟 例:Pspice、Cadence、ADS….. Pspice Cadence

  6. 交通网络 航空网络! 捷運路線图!

  7. 计算机网络 某学校网络架构图

  8. 有向图 有单行道的街道! 行程表!

  9. Social Network High School Dating corporate e-mail Reference: Bearman, Moody and Stovel, 2004 image by Mark Newman Reference: Adamic and Adar, 2004

  10. Protein interaction network Reference: Jeong et al, Nature Review | Genetics

  11. Power transmission grid of Western US

  12. The Internet The Internet as mapped by The Opte Project http://www.opte.org

  13. More Applications • Hypertexts • 网页包含到其他网页的超链接。整个Web是一个图. 搜索引擎需要图处理算法。 • Matching • 职位招聘,如何有效将职位与应聘者匹配? • Schedules • 工程项目的任务安排,如何满足限制条件,并在最短时间内完成? • Program structure • 大型软件系统,函数(模块)之间调用关系。编译器分析调用关系图确定如何最好分配资源才能使程序更有效率。

  14. Graph Applications

  15. Graph Problems and Algorithms

  16. 哈密頓(Hamilton)周遊世界问題 正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地 投影至平面 哈密頓路径至今尚无有效方法來解決!

  17. 最短路径问題 (Shortest Path Problem) 最快的routing 最快航線

  18. 最短路径算法Dijkstra算法 • 可以求出從某一点到图上其他任一点的最短路径

  19. 走迷宫与深度优先搜索(Depth-First Search) 一直往前走 碰壁就回头換条路找 沿途要记录下走过的路线 老鼠走迷宮深度优先搜索

  20. Some graph-processing problems • Path. Is there a path between s to t? • Shortest path. What is the shortest path between s and t? • Longest path. What is the longest simple path between s and t? • Cycle. Is there a cycle in the graph? • Euler tour. Is there a cycle that uses each edge exactly once? • Hamilton tour. Is there a cycle that uses each vertex exactly once? • Connectivity. Is there a way to connect all of the vertices? • MST. What is the best way to connect all of the vertices? • Biconnectivity. Is there a vertex whose removal disconnects the graph? • Planarity. Can you draw the graph in the plane with no crossing edges? First challenge: Which of these problems is easy? difficult? intractable?

  21. 图论的术语

  22. 什么是图? 例一 例二 一堆顶点和边的组合! Set of vertices connected pairwise by edges.

  23. 图论的术语 顶点 (Vertex) 边 (Edge) 一个图G = (V,E) V: 顶点的集合 E: 边的集合 例:如右图 V= {a,b,c,d,e} E= {(a,b),(a,c),(a,d), (b,e),(c,d),(c,e), (d,e)}

  24. 再來一些术语 连通图(connected graph) 子图(subgraph) 树(tree)沒有回路的连通图 森林(forest) 一堆树的集合

  25. 树的实例 ─ 行政组织图

  26. 有向图(Digraph) 有向图 (Digraph) 有向且无简单回路的图 (directed acyclic graph)

  27. 加权图(Weighted Graph) 图片來源:雷欽隆老師“資料結構”課投影片

  28. 生成树(Spanning Tree) 包括图中所有的顶点,并且是一棵树 生成树

  29. 可运用生成树的实例

  30. Graph Terminology

  31. 一些特殊的图

  32. 完全图Complete graphs • 任意两点之间都有一条边与其相连的图称为完全图,以Kn來表示,n为顶点数

  33. 二分图(偶图)Bipartite graphs • A graph that can be decomposed into two partite sets but not fewer is bipartite • It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and vice-versa The graph is bipartite Complete bipartite graph K2,3

  34. 平面图 Planar graphs • A planar graph is a graph that can be embedded in a plane so that no edges intersect Planar: = NOT Planar:

  35. 平面图实例 • 8个顶点(V=8) • 12条边(E=12) • 6个面 (F=6) • 8-12+6=2

  36. 更多平面图实例

  37. 树Trees • 树(tree):连通无简单回路无向图 • 若有n个顶点,則有n-1条边 • 任两点之间仅有一条路径 • 生成树(spanning tree):包括图中所有的顶点,并且是一棵树 tree A connected graph G Spanning trees of G

More Related