1 / 46

Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load

Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load. Outline. Introduction of Modularization Design Lifting Point Applying Wind Load to Module Analysis & Results Hand Calculation Nonlinear Analysis Nonlinear Dynamic Analysis Remaining problems Conclusion

yamin
Download Presentation

Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load

  2. Outline • Introduction of Modularization Design • Lifting Point • Applying Wind Load to Module • Analysis & Results • Hand Calculation • Nonlinear Analysis • Nonlinear Dynamic Analysis • Remaining problems • Conclusion • Q&A

  3. Introduction of Modularization Design

  4. Introduction of Modularization Design Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting at Daylight Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting Start

  5. Introduction of Modularization Design Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting in Air Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting in Air

  6. Introduction of Modularization Design Benefits of modularization design: • Significant decrease in construction time • Ease of construction • Easy access in tight spaces • Better quality

  7. Lifting Point

  8. Lifting Point Lifting Point Cable Element Weak Spring Restrain to Prevent Structural Instability Modeling Method

  9. Lifting Point Center of Gravity (C.G.) ***************************************************** { 3362} > LIST DYNAMIC MASS SUMMARY 1 **************************** *RESULTS OF LATEST ANALYSES* **************************** PROBLEM - TITLE - NONE GIVEN ACTIVE UNITS FEET KIP CYC DEGF SEC /--------/----------------/----------------/----------------/----------------/----------------/----------------/ GLOBAL CENTER OF MASS Mass Moment of Inertia about AXIS COORDINATE TOTAL MASS TOTAL WEIGHT X Axis Y Axis Z Axis /--------/----------------/----------------/----------------/----------------/----------------/----------------/ X 71.11316 80.64080 2594.541 0.0000000E+00 43115.89 25090.97 Y 95.67557 80.64080 2594.541 43115.89 0.0000000E+00 15694.28 Z 39.91543 80.64080 2594.541 25090.97 15694.28 0.0000000E+00 /--------/----------------/----------------/----------------/----------------/----------------/----------------/ Center of Gravity

  10. Lifting Point Lifting point aligns with Center of Gravity: Top : X: -0.724” Y: 0.503” Bottom : X: 2.632” Y: 1.102”

  11. Lifting Point Lifting point: Lift at X:71.07’; Y:95.68’ Top : X: -0.197” Y: 0.144” Bottom : X: -0.829” Y: -0.137”

  12. Lifting Point Offset Lifting point: Lift at X:71.26’; Y:95.85’ Top : X: 30.17” Y: -25.92” Bottom : X: 40.93” Y: 27.54”

  13. Lifting Point Offset Lifting point: Lift at X:71.26’; Y:95.44’ Top : X: -48.38” Y: 37.15” Bottom : X: -35.02” Y: -44.48”

  14. Lifting Point Offset Lifting point: Lift at X:70.85’; Y:95.85’ Top : X: -44.76” Y: 35.05” Bottom : X: 34.76” Y: 37.63”

  15. Lifting Point Offset Lifting point: Lift at X:70.85’; Y:95.50’ Top : X: -48.38” Y: 37.15” Bottom : X: -35.02” Y: -44.48”

  16. Lifting Point Lifting Point Deformation Summary Table

  17. Applying Wind Load to Module

  18. Applying Wind Load to Module Wind speed definition: • Light & variable. = 0-5 mph. • Breezy = 15-25 mph. • Windy = 20-30mph. • Very Windy = 30-40 mph. • Strong = 40-62 mph. • Gale Force = 62-74 mph. • Hurricane = 74+ mph. Design Wind Speed

  19. Applying Wind Load to Module Calculate Exposed Steel Area: { 3349} > PRINT MEMBER LENGTH MEMBERS EXISTING { 3350} > PRINT MEMBER INCIDENCES MEMBERS EXISTING { 3351} > PRINT MEMBER PROPERTIES MEMBERS EXISTING

  20. Applying Wind Load to Module Calculate Joint Load:

  21. Applying Wind Load to Module Time History Wind Pressure for Dynamic Analysis

  22. Applying Wind Load to Module Time History Wind Pressure for Dynamic Analysis

  23. Analysis & Results

  24. Analysis & ResultsHand Calculation 82 ft q T Wind Load Wind Load C. G. C. G. Dead Load Dead Load

  25. Analysis & ResultsHand Calculation (cont’d)

  26. Analysis & ResultsNonlinear Analysis X- Direction Wind Load 4 psf Top : X: 16.12” Y: -8.92” Bottom : X: 22.45” Y: -9.28”

  27. Analysis & ResultsNonlinear Analysis (cont’d) Y- Direction Wind Load 4 psf Top : X: -27.64” Y: 24.65” Bottom : X:-27.43” Y: 32.89”

  28. Analysis & ResultsNonlinear Analysis (cont’d) X- Direction Wind Load 2 psf Top : X: 7.45” Y: -4.03” Bottom : X: 10.54” Y: -4.12”

  29. Analysis & ResultsNonlinear Analysis (cont’d) Y- Direction Wind Load 2 psf Top : X: -13.64” Y: 12.18” Bottom : X: -13.46” Y: 16.71”

  30. Analysis & ResultsNonlinear Analysis (cont’d) Nonlinear Analysis Summary Table

  31. Analysis & ResultsNonlinear Dynamic Analysis Time History Wind Pressure for Dynamic Analysis

  32. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Top Joint Bottom Joint

  33. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Top Joint Displacement

  34. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Bottom Joint Displacement

  35. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Top Joint Displacement

  36. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Bottom Joint Displacement

  37. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Time History Wind Pressure for Dynamic Analysis

  38. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Top Joint Displacement

  39. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Bottom Joint Displacement

  40. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Top Joint Displacement

  41. Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Bottom Joint Displacement

  42. Remaining Problems

  43. Remaining Problems • Instability problem during analysis • Difficulty to obtain wind time history data • Computer limitation • Wind load uncertainty

  44. Conclusion

  45. Conclusion • Structure is sensitive to lifting point • Hand calculation is not able to account for rotational deformation • Nonlinear analysis provides conservative results • Nonlinear dynamic analysis provides more realistic results • 30 MPH is a better criteria for this particular lifting procedure

  46. Q&A

More Related