500 likes | 844 Views
Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load. Outline. Introduction of Modularization Design Lifting Point Applying Wind Load to Module Analysis & Results Hand Calculation Nonlinear Analysis Nonlinear Dynamic Analysis Remaining problems Conclusion
E N D
Nonlinear Analysis / Nonlinear Dynamic Analysis of Module Lifting with Wind Load
Outline • Introduction of Modularization Design • Lifting Point • Applying Wind Load to Module • Analysis & Results • Hand Calculation • Nonlinear Analysis • Nonlinear Dynamic Analysis • Remaining problems • Conclusion • Q&A
Introduction of Modularization Design Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting at Daylight Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting Start
Introduction of Modularization Design Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting in Air Shaw- WEC AP1000 Sanmen Unit #1-CA01 Module Lifting in Air
Introduction of Modularization Design Benefits of modularization design: • Significant decrease in construction time • Ease of construction • Easy access in tight spaces • Better quality
Lifting Point Lifting Point Cable Element Weak Spring Restrain to Prevent Structural Instability Modeling Method
Lifting Point Center of Gravity (C.G.) ***************************************************** { 3362} > LIST DYNAMIC MASS SUMMARY 1 **************************** *RESULTS OF LATEST ANALYSES* **************************** PROBLEM - TITLE - NONE GIVEN ACTIVE UNITS FEET KIP CYC DEGF SEC /--------/----------------/----------------/----------------/----------------/----------------/----------------/ GLOBAL CENTER OF MASS Mass Moment of Inertia about AXIS COORDINATE TOTAL MASS TOTAL WEIGHT X Axis Y Axis Z Axis /--------/----------------/----------------/----------------/----------------/----------------/----------------/ X 71.11316 80.64080 2594.541 0.0000000E+00 43115.89 25090.97 Y 95.67557 80.64080 2594.541 43115.89 0.0000000E+00 15694.28 Z 39.91543 80.64080 2594.541 25090.97 15694.28 0.0000000E+00 /--------/----------------/----------------/----------------/----------------/----------------/----------------/ Center of Gravity
Lifting Point Lifting point aligns with Center of Gravity: Top : X: -0.724” Y: 0.503” Bottom : X: 2.632” Y: 1.102”
Lifting Point Lifting point: Lift at X:71.07’; Y:95.68’ Top : X: -0.197” Y: 0.144” Bottom : X: -0.829” Y: -0.137”
Lifting Point Offset Lifting point: Lift at X:71.26’; Y:95.85’ Top : X: 30.17” Y: -25.92” Bottom : X: 40.93” Y: 27.54”
Lifting Point Offset Lifting point: Lift at X:71.26’; Y:95.44’ Top : X: -48.38” Y: 37.15” Bottom : X: -35.02” Y: -44.48”
Lifting Point Offset Lifting point: Lift at X:70.85’; Y:95.85’ Top : X: -44.76” Y: 35.05” Bottom : X: 34.76” Y: 37.63”
Lifting Point Offset Lifting point: Lift at X:70.85’; Y:95.50’ Top : X: -48.38” Y: 37.15” Bottom : X: -35.02” Y: -44.48”
Lifting Point Lifting Point Deformation Summary Table
Applying Wind Load to Module Wind speed definition: • Light & variable. = 0-5 mph. • Breezy = 15-25 mph. • Windy = 20-30mph. • Very Windy = 30-40 mph. • Strong = 40-62 mph. • Gale Force = 62-74 mph. • Hurricane = 74+ mph. Design Wind Speed
Applying Wind Load to Module Calculate Exposed Steel Area: { 3349} > PRINT MEMBER LENGTH MEMBERS EXISTING { 3350} > PRINT MEMBER INCIDENCES MEMBERS EXISTING { 3351} > PRINT MEMBER PROPERTIES MEMBERS EXISTING
Applying Wind Load to Module Calculate Joint Load:
Applying Wind Load to Module Time History Wind Pressure for Dynamic Analysis
Applying Wind Load to Module Time History Wind Pressure for Dynamic Analysis
Analysis & ResultsHand Calculation 82 ft q T Wind Load Wind Load C. G. C. G. Dead Load Dead Load
Analysis & ResultsNonlinear Analysis X- Direction Wind Load 4 psf Top : X: 16.12” Y: -8.92” Bottom : X: 22.45” Y: -9.28”
Analysis & ResultsNonlinear Analysis (cont’d) Y- Direction Wind Load 4 psf Top : X: -27.64” Y: 24.65” Bottom : X:-27.43” Y: 32.89”
Analysis & ResultsNonlinear Analysis (cont’d) X- Direction Wind Load 2 psf Top : X: 7.45” Y: -4.03” Bottom : X: 10.54” Y: -4.12”
Analysis & ResultsNonlinear Analysis (cont’d) Y- Direction Wind Load 2 psf Top : X: -13.64” Y: 12.18” Bottom : X: -13.46” Y: 16.71”
Analysis & ResultsNonlinear Analysis (cont’d) Nonlinear Analysis Summary Table
Analysis & ResultsNonlinear Dynamic Analysis Time History Wind Pressure for Dynamic Analysis
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Top Joint Bottom Joint
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Top Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Bottom Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Top Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Bottom Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Time History Wind Pressure for Dynamic Analysis
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Top Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) X-direction Wind (4 psf) Bottom Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Top Joint Displacement
Analysis & ResultsNonlinear Dynamic Analysis (cont’d) Y-direction Wind (4 psf) Bottom Joint Displacement
Remaining Problems • Instability problem during analysis • Difficulty to obtain wind time history data • Computer limitation • Wind load uncertainty
Conclusion • Structure is sensitive to lifting point • Hand calculation is not able to account for rotational deformation • Nonlinear analysis provides conservative results • Nonlinear dynamic analysis provides more realistic results • 30 MPH is a better criteria for this particular lifting procedure