1 / 52

Near-threshold non- qq meson candidates

Near-threshold non- qq meson candidates. _. Stephen Lars Olsen Seoul National University. Heavy-Quark Hadrons at J-PARC Symposium at Tokyo Inst. Tech., June 22,2012 . Constituent Quark Model. Gell-Mann.

yanka
Download Presentation

Near-threshold non- qq meson candidates

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Near-threshold non-qq meson candidates _ Stephen Lars Olsen Seoul National University Heavy-Quark Hadrons at J-PARC Symposium at Tokyo Inst. Tech., June 22,2012

  2. Constituent Quark Model Gell-Mann 1964 The model was proposed independently by Gell-Mann and Zweig with three fundamental building blocks: 1960’s (p,n,l) Þ 1970’s (u,d,s mesons are bound states of a of quark and anti-quark: Zwieg baryons are bound state of 3 quarks:

  3. Fabulously successful Quarks are probably the most well known particle physics quantity among the general public Google Search: quark: 41,000,000 results (0.13 seconds) 鈴木 一朗: 2,600,000 results (0.65 seconds)

  4. Superseded by QCD in the 1970s:observed particles are color singlets color + complementary color  white white 3 primary colors  blue-yellow green-magenta red-cyan Λ= (uds) Mesons are color-anticolorpairs Baryons are red-blue-green triplets 4

  5. QCD has other color-singlet combinations: Pentaquark: H-diBaryon Glueball Tetraquark mesons qq-gluon hybrid mesons Other possible “white” combinations of quarks & gluons: u d u d s _ u tightly bound 6-quark state S=+1 Baryon d s u s d Color-singlet multi- gluon bound state D0 _ c _ u loosely bound meson-antimeson “molecule” c tightly bound diquark-diantiquark u _ p _ u c _ _ u _ D*0 c _ _ c c

  6. Where are they? u d u d s _ u d s u s d D0 _ c _ u c _ p u _ _ c c u c _ _ u _ D*0 c

  7. some history: low-mass scalar mesons the “light” scalar-meson nonet JP=0+ 800 800 k+ k0 The “light” scalar mesons 980 980 a00 f0 a0- a0+ 980 s 600 _ k- k0 800 800 More “light” scalar-mesons than quark model slots: s, f0(980), f0(1370), f0(1500), f0(1710), f0(1790), …

  8. light scalar nonet: masses are inverted scalars pseudoscalars unique typical ss-quark content _ • In qq meson nonets, the I=1 state (here the a0(980)) has no ss content. • No “light” JP=1+ and 2++ partner nonets in the same mass range. _ _

  9. If not qq, then what? _ Possibilities that have been suggested: loosely bound meson-antimeson “molecule” tightly bound diquark-diantiquark _ _ s K q _ q s “nuclear” force _ s q _ s In color space: _ q s K red+blue=magenta (antigreen) cyan+yellow=green (antimagenta) J.D.Weinstein & N.Isgur PRD 27, 588 (1983) A colored diquark is like a antiquark A colored diantiquark is like a quark R.L.Jaffe PRD 15, 267 (1977)

  10. Institute of High Energy Physics-- Beijing -- BEPC BESIII To Tiananmen Square (~10 km)

  11. BEPCII storage rings Beam energy: 1.0 - 2.3 GeV Peak Luminosity: Design:1×1033 cm-2s-1 Achieved:0.65x1033cm-2s-1 Beam energy measurement: Using Compton backscattering technique. Accuracy: dEbeam/Ebeam ≈ 510– 5 dEbeam ≈ 50 KeV @Ebeam ≈ mt

  12. BESIII Collaboration Helmholtz Institute Mainz Johannes Gutenberg-University Mainz 11 Turkey: Turkish accelerator center 29 >300 physicists 49 institutions from 10 countries

  13. _ The a0(980) & f0(980) straddle the KK threshold a0(980) (hp0) f0(980)  K+K- f0(980)  p+p- 2mK 2mK

  14. a0(980)0 f0(980) mixing N.N. Achasov, S.A. Devanin & G.N. Shestakov, Phys. Lett. B88, 367 (1979) isospin violation enhanced by K0 – K+ mass difference 2mK+= 987.4 MeV 2mK0= 995.2 MeV PDG2010: Mf0= 980 ± 10 MeV f0= 40 ~ 100 MeV Ma0= 980 ± 20 MeV a0= 50 ~ 100 MeV 2mK+ expect a narrow line shape: G≈2(mK0-mK+)=7.8 MeV 2mK0

  15. BES study of a0(980)0 f0(980) mixing BESIII PRD 83, 032003 (2011)

  16. a0(980)0 f0(980) mixing results _ KK molecule model 90% CL upper limits different models & parameterizations Statistics limited, but BESIII already has lots more data.

  17. J/f0(980)p0,f0(980)pp BESIII PRL 108, 182001 (2012) from helicity analyses h(1405) h(1405) f0(980)+- f0(980)00 f1(1285) 3.7s f1(1285) 1.2s 1st observations: (1405)f0(980)p0 & J/ygf0(980)p0 Large Isospin violations:

  18. Anomalous f0(980)lineshapein h(1405)f0(980)p0 BESIII PRL 108, 182001 (2012) • Fitted mass: • M”f0”= 989.9 ± 0.4 MeV • ”f0”= 9.5± 1.1 MeV The peak is midway between 2mK0 & 2mK+ • & width ≈ 2(mK0 - mK+) PDG2010: Mf0= 980 ± 10 MeV • f0=40 ~ 100 MeV

  19. Effect of Triangle Singularity? J.J.Wu et al, PRL 108, 081803 (2012) Triangle Singularity (TS) a0—f0 mixing h(1405) _ _ K*K and KK are on shell enhancing TS contribution and isospin violation a0—f0 mixing is too small to explain anomaly by itself f0(980) and h(1405) strongly influenced by the nearby KK & KK* thresholds. _ _

  20. Baryonium at the pp threshold? _

  21. J/ygpp @BESII What is this??? BESII PRL 91, 022001 (2003) This is the hcpp the J/y’s spin=0 partner M(pp) GeV

  22. Fit the M(pp) distribution _ fit with a sub-threshold resonance “cartoon” real fit 0.3 0.2 0.1 0 M(pp) GeV Mpp-2mp (GeV) BESII PRL 91, 022001 (2003) +3 +5 -10 -25 M=1859 MeV/c2 G < 30 MeV/c2 (90% CL)

  23. X(1835) has large BR to pp • BESIII: • our estimate from unpublished Crystal Ball data: • implies a huge Br(Xpp): J/yg X XtalBall (unpublished) see L.Kopke, N.Wermes,Phys. Rep 174, 67 (1989) Since decays to pp are only possible from the tail of X(1835), such a BR indicates X(1835) has a huge coupling to pp !

  24. X(3872) meson near the DD* threshold _

  25. KEK Laboratory, Tsukuba Japan Belle Detector Fukushima Mt Tsukuba e- e+ KEKB

  26. _ cc meson production in B decays C+2/3 “Charmonium” _ b-1/3 C-2/3 B0 W- d1/3 _ S-1/3 “spectator” K0 d1/3 Belle’s main purpose: Measure CP violations with B mesons that decay like this.  Nobel prize for Kobayashi &Maskawa in 2008

  27. _ Charmonium (cc) meson spectrum All of the states below 2mD have been identified

  28. The X(3872) in BK p+p-J/y discovered by Belle (140/fb) PRL 91, 262001 (2003) y’p+p-J/y X(3872)p+p-J/y M(ppJ/y) – M(J/y)

  29. X(3872)p+p-J/y confirmed by many experiments LHCb Belle CDF ~6000 evts! MX = 3871.61 ± 0.16 ± 0.19 MeV MX = 3871.96 ± 0.46 ± 0.10 MeV CDF: PRL 103 152001 MX = 3871.85 ± 0.27 ± 0.19 MeV LHCb: arXiv:1112.5310 Belle: PRD 84 052004

  30. p+p-system in X(3872)p+p-J/y comes from rp+p- Belle: PRD 84 052004 CDF: PRL 96 102002 rp+p- lineshape M(p+p- ) p+ r p- X3872 J/y Problem: (cc)r J/y violates Isospin and should be strongly suppressed _ M(p+p- )

  31. X(3872) not well matched toany unassigned cc level _ 3872 MeV

  32. X(3872) mass(in p+p-J/ychannel only) D0D*0 molecule?? _ D0 _ c u _ p _ _ u D*0 c If so, the binding energy is very small Isospin Violation in X(3872) decay: • MD0+MD*0=3871.79 ± 0.30 MeV MX(3872) –(MD0 + MD*0) = -0.12 ± 0.35 MeV _ ≈on mass shell ≈8MeVoff mass shell MX(3872) –(MD+ + MD*-)= -7.74 ± 0.35 MeV

  33. X(3872)-J/y relative sizes drms(208Pb nucleus)≈5.5 fm + + + X(3872) + + 208Pb + + drms(X3872) ~ 8 fm + + + + + + + + + drms(J/y) ≈ 0.4 fm + + + J/y Volume(J/y) /Volume(X3872) ≈ 10-4 • How can such a fragile object be produced in H.E. pp collisions? heavy ion collisions?? _ -- arXiv 0906.0882: sCDF(meas)>3.1±0.7nb vsstheory(molecule)<0.11nb C. Bignaminiet al, PRL 103, 162001:

  34. Very different objects! Sun Venus (x3)

  35. Charged Zb1(10,610)+ and Zb2(10,650)+ in the b-quark sector

  36. “bottomonium” bb mesons _ ϒ(4S) 2MB = 10358.7 MeV (4S) p+p-  (1S) ?

  37. Belle: G(4S)p+p-(1S) (4S)  (1S) p+p- 2S 3S 4S 477 fb-1 52±10 evts Belle: PRD 75 071103

  38. (5S) p+p-  (1S) ? ϒ(5S) ϒ(4S) 2MB = 10358.7 MeV

  39. Belle:G(5S)p+p-(1S) ~1/20th the data ~1/5ththe cross-section 23.6 fb-1 vs 477 fb-1 325±20 evts! K.F. Chen et al (Belle) PRL 100, 112001 (2008)

  40. “(5S)” is very different from other  states Anomalous production of (nS)+- (MeV) Belle PRL100,112001(2008) X10--2 Recall Y(4260) with anomalous (J/+-) Is there a Yb equivalent close to (5S)

  41. + “Y(5S)” p-Zb1,2 p+ϒ(1,2,3S) p- Zb2(10660) Zb1(10610) p+ 10,660 MeV 10,610 MeV p+ ϒ(3S) p+ ϒ(2S) ϒ(1S) M(Υ(nS)π+)max

  42. + “Y(5S)” p-Zb1,2 p+hb(1,2P) p- Zb2(10660) Zb1(10610) p+ 10,660 MeV 10,610 MeV p+ hb(2P) hb(1P) M(hb+)

  43. Summary of parameter measurements mB+mB* 2mB* Zb(10610) Zb(10650) M=10607.22.0 MeV M=10652.21.5 MeV =18.42.4 MeV =11.52.2 MeV March 2012 Belle PRL 108, 122001

  44. Zb1 & Zb2, “smoking guns” for multiquark mesons u b • decays to ϒ(nS) & hb(nP)  must contain bb pair • electrically charged  must contain ud pair _ b d _

  45. _ _ B-B* & B*-B* molecules?? B Zb(106050)± Zb(106010)± B* b b b _ _ b _ _ B* B* _ _ B-B* “molecule” B*-B* “molecule” MZb(106010) –(MB+MB*) = + 3.6 ± 1.8 MeV MZb(106010) –2MB* = + 3.1 ± 1.8 MeV Slightly unbound threshold resonances?? M=10608.11.7 MeV M=10653.31.5 MeV Belle: =15.52.4 MeV =14.02.8 MeV MB* + MB* = 10650.2  1.0 MeV PDG: MB + MB* = 10604.50.6 MeV

  46. Summary Lots of new particles & threshold effects found recently • KK/KK* thresholds have large influences on f0/a0(980) & h(1405) • X(1860) near NN threshold pp bound state (baryonium)? • X(3872) near DD* threshold  D0D*0 bound state? • Zb1(10,610) * Zb2(10660)  BB* & B*B* resonances? _ _ _ _ _ _ _ _ Lots of work for theorists to do…

  47. Thank you どもぅありがとぅ 감사합니다

  48. mesons come in nonets JP=0- JP=1- 498 494 892 896 K*+ K*0 135 548 783 776 776 776 r- w r0 r+ 139 139 958 f 1020 _ 494 498 K*- K*0 896 892 (p+,p0,p-)=lightest (r+,r0,r-)=lightest nr=0 nr=0 S-wave S-wave

  49. baryons come in octets & decuplets JP=1/2+ JP=3/2+ 939 938 M=1232 MeV 1115 M=1385 MeV 1189 1197 1192 M=1533 MeV 1315 1321 ?? W- M=1672 MeV M=????MeV all nr=0 all S-waves all nr=0 all S-waves

  50. W- not the 1st Baryon correctly predicted 1959!! pg 425 R. Dalitz 1925-2006 S.F. Tuan KN threshold 1405 MeV

More Related