250 likes | 331 Views
-capture measurements with a Recoil-Separator. Frank Strieder. Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum. Int. Workshop on Gross Properties of Nuclei and Nuclear Excitation 15 th – 21 st January 2006, Hirschegg, Austria. 12 C( ,) 16 O the Holy Gral of
E N D
-capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties of Nuclei and Nuclear Excitation 15th – 21st January 2006, Hirschegg, Austria
12C(,)16O the Holy Gral of Nuclear Astrophysics e 3He(,)7Be pp chain e
low-energy tail of broad resonance Er Danger of Extrapolation Important for Experiments S(E)-FACTOR Low energy High energy S(E) extrapolation or measurements ? direct measurement LINEAR SCALE non resonant process sub-threshold resonance -Er 0 interaction energy E DANGER OF EXTRAPOLATION !
ERNA - Experimental approach Pro & Cons A different approach: recoil mass separator Cn+ B A detection A C purification detection separation coincidence Requirements Advantages Disadvantages • low background • high detection efficiency • measure stot • background free g-ray spectra • gas target • beam purification • 100% transmission for the • selected charge state • high suppression of the incident beam • inverse kinematics (gas target) • difficult to do • commissioning • charge state • beam intenity ?
g-Recoil Coincidences Separation Detection & Identification projectiles Recoils + Recoils projectiles focusing prec = pproj momentum conservation g-ray emission Recoil cone ERNA - Experimental approach He target projectiles Minimum supression factor with s = 10nbarn, ntarget=1x1018at/cm² Nproj / Nrecoils~ 1x1014
ERNA - Experimental approach Setup ion source dynamitrontandem accelerator recoil focussing D E - E telescope He magnetic Gastarget Wien filter qu adrupole multiplets analysing doublet triplet magnet singlet ion beam Wien filter purification Wien filter side 60° magnet Wien filter FC recoil separation
characteristics: • angular acceptance 32 mrad for 16O at Elab=3.0 – 15.0MeV for the total length of the gas target • energy acceptance 10% for 16O at Elab=3.0 – 15.0 MeV • suppression of incident beam (10-10 - 10-12)·10-2 (IC) => smin< 1 nb • purification of incident beam < 10-22 • resolution of ion chamber 250·A keV or combination E-silicon strip detector • layout COSY Infinity (recoils fit in 4” beam tube) • field settings are not calculated, but tuned
ERNA - Experimental approach Setup Gas target Gas pressure profile: 7Li(a,g)11B, 7Li(a,a)7Li + energy loss of: 14N, 12C, 7Li
ERNA - Experimental approach Charge State Distributions measured for entire energy range 4He gas 12C beam but question about point of origin in the gas target → no equilibrium
ERNA - Experimental approach Setup Solution: a post-target-stripper • First test with laser ablated carbon foil: 12C(12C,8Be)16O • Final configuration: Ar post-target stripper after the 4He target to the separator 4He Ar 3He(,)7Be no post-target-stripper – measure all charge states
ERNA Motivation Helium Burning Stellar Helium burning: 12C(a,g)16O Main reactions: 3a12C and 12C(a,g)16O 4He Red Giant 12C/16O abundance ratio triple alpha 12C Subsequent stellar evolution and nucleosynthesis 4He 12C(a,g)16O but 16O E0~ 300 keV, very low cross section Accurate measurements at higher energy and extrapolation to E0 are needed
ERNA E/E Matrix 12C(a,g)16O Ecm=2.5 MeV SuppressionR~8*10-12
solar spy = solar neutrinos ERNA Motivation Helium Burning Neutrino spectroscopy ? Sun = calibrated source
ERNA Motivation Neutrino Spectroscopy Influence of different sources of uncertainties on the neutrino flux D(L ) = 0.4 % D(age ) = 0.4 % D(Z/H ) = 3.3 % D(p-p) = 2 % D(3He+3He) =6 % D(3He+4He) =15 % D(7Be+p) = 10 %
ERNA Motivation Neutrino Spectroscopy Influence of different sources of uncertainties on the neutrino experiment
Jp Ex (keV) 4570 7/2- DC 429 Q = 1587keV 3He+4He 429 1/2- DC 0 g EC Jp 0 3/2- Ex (keV) 7Be level scheme g 1/2- 428 Gamma: S34(0) = 0.507±0.016 keVb Activation: S34(0) = 0.563±0.018 keVb 3/2- 0 7Li ERNA Motivation 3He(,)7Be 3He(a,g)7Be(e,n)7Li*(g)7Li
ERNA E/E Spectra 3He(,)7Be Ecm=1.8 MeV Inverse kinematics
ERNA astrophysical S Factor RESULTS Preliminary result
ERNA – present status • 12C(,g)16O Ecm>1.9 MeV (1.3 MeV) • 3He(a,g)7Be Ecm>1.1 MeV (0.6 MeV) ERNA - future plans and other perspectives • 14N(p,g)15O • 16N b-delayed -decay • 14N(a,g)18F • d(a,g)6Li