670 likes | 800 Views
A stochastic model for stress response in CHO mammalian cells . SAMSI Discrete Models in Systems Biology December 3-5, 2008. Ovidiu Lipan Physics Department University of Richmond, Virginia. Supra-chiasmatic nucleus (SCN): The master pacemaker in mammals.
E N D
A stochastic model for stress response in CHO mammalian cells SAMSI Discrete Models in Systems Biology December 3-5, 2008 Ovidiu Lipan Physics Department University of Richmond, Virginia
Supra-chiasmatic nucleus (SCN): The master pacemaker in mammals From: Moore-Ede, Sulzman and Fuller (eds.) The Clock That Times Us
Experimental design • Mice were entrained to a 12:12 light-dark cycle for 2 weeks • Animals were then placed in constant dim white light (<1 Lux) for 42 hr • Tissues were collected at 4-hr intervals over two circadian cycles (12time-points) • RNA of one mouse per time point was analyzed on oligonucleotide arrays (Affymetrix U74Av2)
Single profiles of genes showing circadian regulation in both liver and heart
STRESS l l l f h k R I M C S T A H S i i i i i i t t t t t t o r m o o e s n r e s s : r a n s c r p o n a c v a o n o e a o c . . , ( ) G S i 1 9 9 3 2 5 9 1 4 0 9 b l h l l A j i i i i t e n e s c e n c e m a o r q u e s o n n o o g y s o w c e s c o p e . , , h d h h h i i i i i t t t w r a p c a n g e s n e r e n v r o n m e n s u c , l d h l t t t t t a s e x p o s u r e o e e v a e e m p e r a u r e s e a v y m e a s , , b l d l f i i i i t t a c e r a a n v r a n e c o n s . h b l h l l h I i t t t a s e c o m e c e a r a a o r g a n s m s s a r e a l l h l d d i i t t t c o m m o n m o e c u a r r e s p o n s e a n c u e s a r a m a c h h f d h i i t t t t c a n g e n e p a e r n o g e n e e x p r e s s o n a n e l d h f f l f h h k i i t t t e e v a e s y n e s s o a a m y o e a s o c d d i i t t o r s r e s s - n u c e p r o e n s . h k l d H i i t t e a s o c p r o e n s e n s u r e s u r v v a u n e r f l d h f l f h k d i i i t t t t t s r e s s u c o n o n s a e u n c e c e , , l d l d l l l l d h i t t t t w o u e a u m a e y o c e e a .
h d l l l l l f h k R I I M C S T A H S i i i i i i t t t t t t t t n e u o n r s m r o e s o s e c e e s n r e s s : r a n s c r p o n a c v a o n o e a o c . . , , ( ) d G H S F S i i i i i 1 1 9 9 3 2 5 9 1 4 0 9 t e n e s s m a n a c n e e n c e n a . , , b d D N A i i i m o n o m e r c n o n - n n g , f h h k U H S F 1 t o r m p o n e a s o c . , b l i i t t a s s e m e s n o a r m e r , b d ¯ i i t n s o s p e c c s e q u e n c e l h h k i t t e e m e n s n e a s o c l T i i t t p r o m o e r r a n s c r p o n a . f h h k i i t t t a c v a o n o e a s o c g e n e l d d l l f i t e a e s o n c r e a s e e v e s o h l l d F H S F i i i 7 0 t s p n a y s s o c a e s . , f h d D N A i t r o m e a n s l l d t t t e v e n u a y c o n v e r e o b d i i n o n - n n g m o n o m e r s
/ / / h i t t p : w w w m c r o s c o p y u c o m . . Chinese-hamster ovary cells (CHO)
l h d b l l G i i t t t e n e r a a p p r o a c o s u y a o o g c a s y s e m
l i d i k l b d ' P A D N A i i i 5 3 5 t t t t a s m c o n s r u c o n : - o a s e c o n a n n g p r o m o e r a n - . l d f h h b l d f l b d i 7 0 1 t t t u n r a n s a e r e g o n o e m o u s e s p g e n e w a s s u c o n e r o m a a m a . h l h d ¯ d b l b i i i i i i 7 0 1 t p a g e c o n e c a r r y n g a n s p g e n e e n e y g e n o m c r a r y s c r e e n n g . ( ) h h b d f h S D N A A D N A i i 7 0 1 t t t r a a g e n e u s n g a u m a n s p c a s a p r o e c c o n g o r e . . h l l f l d f G F P A S V T i i i i 4 0 t t t w a p o y s g n a r o m a r g e a n g e n g e n e w a s e n g n e e r e o u s e ( ) h d f h h h h d A T G T i i 7 0 1 t t t t t t o e s a r c o o n o e s p g e n e e c m e r a g e n e w a s n s e r e . . h d l S P i i i i i i 7 2 t t t t t t n o a p v e c o r c o n a n n g a y g r o m y c n r e s s a n c e g e n e n o r e r o s e e c f b l f t t t t o r s a e r a n s e c a n s .
( ) i f f l l P C H O K A T C C M V A 1 t t t t r e p a r a o n o r a n s e c a n s : - c e s a n a s s a s , , ( ) l h l l l l d M E M C i i i i i i i t t t w e r e g r o w n n - a p a e g r o c o n a n n g p e n c n s r e p o m y c n a n a m - , ( ) % ( ) h l l d l d h d C F B S G B P i i i i i i 1 0 t t t t p o e r c n e g r o a n c o m p e m e n e w e m n o - r o u c s . ( ) l l f d b l f f C L I i i i i i i i t t t t t e s w e r e r a n s e c e y p o e c o n u s n g p o e c a m n e n v r o g e n a s p r e v - ( / ) l d b d f d f l h l A L i i i i i 1 0 5 0 0 t t o u s y e s c r e e r a y s o s e e c o n n y g r o m y c n ¹ g m s n g e . , l l l d d b l d l h f d b T i i i i i i i t t c e c o n e s w e r e e r v e y m n g u o n e s c r e e n n g w a s p e r o r m e y . ( ) ° k d l h l b l ° N T E E i i i i 2 0 0 0 t e p u o r e s c e n c e o n a n c o n e s w a o w a s a u o r e s c e n c e n - l d d l ¯ d f d d l b ° i i i i i t t t t t t t t e n s y w e r e s e e c e a n a m p e o r a o n a e s n g y o w c y o m e r y .
An example of GFP in CHO cells www.panomics.com/images/36_3_CELLS_2_V1.jpg
Flow cytometry BD Biosciences LSR II. http://home.ncifcrf.gov/ccr/flowcore/instru_LSR.JPG
h d b l l h h k T i t t t e o u e e x p o n e n a r e s p o n s e o e a s o c s
State A finite set of transitions Master equation Transition probability rates Moments
Generating function Fallingfactorial polynomials
Factorial moments Stirling numbers of the second kind
Subgroup Factorial cumulants, Young tableaux and Faadi Bruno formula
Solution to the linear stochastic genetic network State Signal generators Transition probability rates