1 / 67

A stochastic model for stress response in CHO mammalian cells

A stochastic model for stress response in CHO mammalian cells . SAMSI Discrete Models in Systems Biology December 3-5, 2008. Ovidiu Lipan Physics Department University of Richmond, Virginia. Supra-chiasmatic nucleus (SCN): The master pacemaker in mammals.

yeva
Download Presentation

A stochastic model for stress response in CHO mammalian cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A stochastic model for stress response in CHO mammalian cells SAMSI Discrete Models in Systems Biology December 3-5, 2008 Ovidiu Lipan Physics Department University of Richmond, Virginia

  2. Supra-chiasmatic nucleus (SCN): The master pacemaker in mammals From: Moore-Ede, Sulzman and Fuller (eds.) The Clock That Times Us

  3. Experimental design • Mice were entrained to a 12:12 light-dark cycle for 2 weeks • Animals were then placed in constant dim white light (<1 Lux) for 42 hr • Tissues were collected at 4-hr intervals over two circadian cycles (12time-points) • RNA of one mouse per time point was analyzed on oligonucleotide arrays (Affymetrix U74Av2)

  4. Single profiles of genes showing circadian regulation in both liver and heart

  5. STRESS l l l f h k R I M C S T A H S i i i i i i t t t t t t o r m o o e s n r e s s : r a n s c r p o n a c v a o n o e a o c . . , ( ) G S i 1 9 9 3 2 5 9 1 4 0 9 b l h l l A j i i i i t e n e s c e n c e m a o r q u e s o n n o o g y s o w c e s c o p e . , , h d h h h i i i i i t t t w r a p c a n g e s n e r e n v r o n m e n s u c , l d h l t t t t t a s e x p o s u r e o e e v a e e m p e r a u r e s e a v y m e a s , , b l d l f i i i i t t a c e r a a n v r a n e c o n s . h b l h l l h I i t t t a s e c o m e c e a r a a o r g a n s m s s a r e a l l h l d d i i t t t c o m m o n m o e c u a r r e s p o n s e a n c u e s a r a m a c h h f d h i i t t t t c a n g e n e p a e r n o g e n e e x p r e s s o n a n e l d h f f l f h h k i i t t t e e v a e s y n e s s o a a m y o e a s o c d d i i t t o r s r e s s - n u c e p r o e n s . h k l d H i i t t e a s o c p r o e n s e n s u r e s u r v v a u n e r f l d h f l f h k d i i i t t t t t s r e s s u c o n o n s a e u n c e c e , , l d l d l l l l d h i t t t t w o u e a u m a e y o c e e a .

  6. h d l l l l l f h k R I I M C S T A H S i i i i i i t t t t t t t t n e u o n r s m r o e s o s e c e e s n r e s s : r a n s c r p o n a c v a o n o e a o c . . , , ( ) d G H S F S i i i i i 1 1 9 9 3 2 5 9 1 4 0 9 t e n e s s m a n a c n e e n c e n a . , , b d D N A i i i m o n o m e r c n o n - n n g , f h h k U H S F 1 t o r m p o n e a s o c . , b l i i t t a s s e m e s n o a r m e r , b d ¯ i i t n s o s p e c c s e q u e n c e l h h k i t t e e m e n s n e a s o c l T i i t t p r o m o e r r a n s c r p o n a . f h h k i i t t t a c v a o n o e a s o c g e n e l d d l l f i t e a e s o n c r e a s e e v e s o h l l d F H S F i i i 7 0 t s p n a y s s o c a e s . , f h d D N A i t r o m e a n s l l d t t t e v e n u a y c o n v e r e o b d i i n o n - n n g m o n o m e r s

  7. / / / h i t t p : w w w m c r o s c o p y u c o m . . Chinese-hamster ovary cells (CHO)

  8. l h d b l l G i i t t t e n e r a a p p r o a c o s u y a o o g c a s y s e m

  9. l i d i k l b d ' P A D N A i i i 5 3 5 t t t t a s m c o n s r u c o n : - o a s e c o n a n n g p r o m o e r a n - . l d f h h b l d f l b d i 7 0 1 t t t u n r a n s a e r e g o n o e m o u s e s p g e n e w a s s u c o n e r o m a a m a . h l h d ¯ d b l b i i i i i i 7 0 1 t p a g e c o n e c a r r y n g a n s p g e n e e n e y g e n o m c r a r y s c r e e n n g . ( ) h h b d f h S D N A A D N A i i 7 0 1 t t t r a a g e n e u s n g a u m a n s p c a s a p r o e c c o n g o r e . . h l l f l d f G F P A S V T i i i i 4 0 t t t w a p o y s g n a r o m a r g e a n g e n g e n e w a s e n g n e e r e o u s e ( ) h d f h h h h d A T G T i i 7 0 1 t t t t t t o e s a r c o o n o e s p g e n e e c m e r a g e n e w a s n s e r e . . h d l S P i i i i i i 7 2 t t t t t t n o a p v e c o r c o n a n n g a y g r o m y c n r e s s a n c e g e n e n o r e r o s e e c f b l f t t t t o r s a e r a n s e c a n s .

  10. ( ) i f f l l P C H O K A T C C M V A 1 t t t t r e p a r a o n o r a n s e c a n s : - c e s a n a s s a s , , ( ) l h l l l l d M E M C i i i i i i i t t t w e r e g r o w n n - a p a e g r o c o n a n n g p e n c n s r e p o m y c n a n a m - , ( ) % ( ) h l l d l d h d C F B S G B P i i i i i i 1 0 t t t t p o e r c n e g r o a n c o m p e m e n e w e m n o - r o u c s . ( ) l l f d b l f f C L I i i i i i i i t t t t t e s w e r e r a n s e c e y p o e c o n u s n g p o e c a m n e n v r o g e n a s p r e v - ( / ) l d b d f d f l h l A L i i i i i 1 0 5 0 0 t t o u s y e s c r e e r a y s o s e e c o n n y g r o m y c n ¹ g m s n g e . , l l l d d b l d l h f d b T i i i i i i i t t c e c o n e s w e r e e r v e y m n g u o n e s c r e e n n g w a s p e r o r m e y . ( ) ° k d l h l b l ° N T E E i i i i 2 0 0 0 t e p u o r e s c e n c e o n a n c o n e s w a o w a s a u o r e s c e n c e n - l d d l ¯ d f d d l b ° i i i i i t t t t t t t t e n s y w e r e s e e c e a n a m p e o r a o n a e s n g y o w c y o m e r y .

  11. The HSP70-GFP construct

  12. An example of GFP in CHO cells www.panomics.com/images/36_3_CELLS_2_V1.jpg

  13. Flow cytometry BD Biosciences LSR II. http://home.ncifcrf.gov/ccr/flowcore/instru_LSR.JPG

  14. h d b l l h h k T i t t t e o u e e x p o n e n a r e s p o n s e o e a s o c s

  15. The stochastic modelfor the heat shock

  16. State

  17. State A finite set of transitions Master equation Transition probability rates Moments

  18. Generating function Fallingfactorial polynomials

  19. Factorial moments Stirling numbers of the second kind

  20. Boundary condition

  21. State

  22. Subgroup Factorial cumulants, Young tableaux and Faadi Bruno formula

  23. Concatenation

  24. Time evolution equation for factorial cumulants

  25. Solution to the linear stochastic genetic network State Signal generators Transition probability rates

More Related