1.15k likes | 1.29k Views
Родительские галактики гамма-всплесков и космология. Соколов В.В.
E N D
Родительские галактики гамма-всплесков и космология Соколов В.В. Обзор результатов наблюдений, посвященных исследованию свойств родительских галактик космических гамма-всплесков – светимостей, масс, темпа звездообразования, металличности – в зависимости от величины космологического красного смещения z. Отличаются ли родительские галактики гамма-всплесков от галактик с такими же z, а также от локальных галактик? Поглощение в направлении на всплеск, скопления галактик на луче зрения и вокруг него. При какихzнаблюдаемые гамма-всплески могут быть связаны со взрывами первичных (Population III) звезд? Дискуссия об эволюции наблюдаемого темпа звездообразования и средней звездной плотности по родительским галактикам гамма-всплесков и по другим галактикам с такими же z.
T0 + 454 days T0 + 23 days T0 + 4 h U GRB 970508 WHT T0 + 4 h R 2.2 CAHA (Fruchter et al. 2000) HST (Pian et al. 1998) (Metzger et al. 1997) HST (Castro-Tirado et al. 1998, Science 279, 1011.) GRB 970508 at z < 0.835: First Sp cosmol. origin evi.! The first afterglow spectral obs for long GRB 970508
A&A, 337, 356 (1998) BVRcIc light curves of GRB970508 optical remnant and colors of underlying host galaxy S.Zharikov, V. Sokolov, and Yu.Baryshev A&A, 372, 438 (2001) Properties of the host galaxy of the gamma-ray burst 970508 and local star-forming galaxies V.Sokolov, S.Zharikov, Yu.Baryshev, M.O. Hanski, K. Nilsson, P. Teerikorpi, L. Nicastro, and E. Palazzi The Rc band field near GRB 970508 optical source. The image size is 33′′ × 33′′. N -top, E-right. The G1, G2, G3 are nearby galaxies. The arrow denotes an optical remnant of GRB970508.
Multi-color photometry and the Rc image of the GRB 980703 host galaxy field from BTA observations in July 1998. The comparison of energy distribution obtained from BVRcIc fluxes (with consideration for the shift in the ultra-violet part of spectrum for z=0.966) of this galaxy with energy distribution in spectra of galaxies of different Hubble types is shown. (The FWHM of each filter for its λeff with consideration for its left shift for z=0.966 are denoted by dotted horizontal segments with bars.) The massive SFR is seen in rest frame UV part spectra of star-forming galaxies. It is just a light of massive stars in the GRB hosts…
The population synthesis modeling: Comparison of modeled and observed fluxes in the filters B, V, Rc,Ic, J, H, K for the GRB 980703 host galaxy (z=0.9662). If GRBs are associated with anactive star formation, then we might expect the light oftheir host galaxies to be affected by internal extinction.
The population synthesis modeling: A&A, 2001, 372, 438, by V.Sokolov, T.Fatkhullin, A.J.Castro-Tirado, A.S.Fruchter et al. (z=0.9662)
A&A, 2001, 372, 438, by V.Sokolov et al. Extinction curves for the reddening laws. Cardelli extinctionlaw represents the reddening in MilkyWay, while Calzetti law was derived empiracally from a sample of integrated spectraof starburst galaxies
Astro-ph/1102.1469, Fig.A.2 from Tayyaba Zafar, Darach Watson1, Johan P. U.Fynbo, Daniele Malesani, P´all Jakobsson , and Antonio de UgartePostigo The optical spectrum of the afterglow of GRB080607 (z =3.0368) was obtained with the Keck.
Bull. Spec. Astrophys. Obs.,2001, 51, 48-50 • GRB 970508 host, MBrest = – 18.62 • GRB 980703 host, MBrest = – 21.27
Bull. Spec. Astrophys. Obs.,2001, 51, 48-60 and 38-47 (astro-ph/0107399) • The observed R-band magnitude vs. spectroscopic redshift forthe first12 GRB host galaxies. The BTAR-band magnitudes (from Sokolov et al, 2001, A&A 372, 438 ) aremarked with circles, while asterisks refer to the resultsof other authors. • Also the HDF F606W magnitude vs.photometrical redshift distribution is plotted. Catalogof the F606W magnitudes and photometrical redshiftswas used from Fernández-Soto et al., 1999
The “simple” (but brawl) conclusion: • It is shown that these galaxiesare usual oneswith a highstar formation rate, they are mainly observed in optical at redshiftsabout 1 and higher. • V. V. Sokolov, T. A. Fatkhullin, A. J. Castro-Tirado, A. S. Fruchter et al.,2001 • GRB hosts should not to be special, butnormalstar-forming galaxies (the most abundant),detected at any z just because a GRB eventhas occurred • see S.Savaglio et al., 2006-2009
The monitoring of GRB afterglows and the study of their host galaxies with the SAO RAS 6-m telescope from 1997V. Sokolov et al. • The first resultof the GRB optical identification (with objects already known before): GRBs are identified with ordinary (or the most numerous in the Universe) galaxies up to 28 st. magnitudes and more. • The GRB hosts should not be special, but normal field star forming galaxies at comparable redshifts and magnitudes.
SN 1998bw and Astronomy of γ-ray bursts with the 6-m telescope--------------------------------
GRBs and SNe with spectroscopically confirmed connection: GRB 980425/SN 1998bw (z=0.0085), GRB 030329/SN 2003dh (z=0.1687), GRB 031203/SN 2003lw (z=0.1055), GRB/XRF 060218/SN2006aj(z=0.0335) XRF 080109/SN2008D (z=0.0065) GRB 100316D/SN2010bh (z=0.059) + the numerous phot. confirmations Searching for more Sp. confirmed pairs of GRBs (XRFs) and SNe in future observations is very important for understanding the nature of the GRB-SN connection, the nature of GRBs, and the mechanism of core-collapse SNe explosion (see more in the posters…)
SN 2006aj/ GRB 060218, Δt = 2.55 d. v = 33,000 km s-1 FeIII, FeII FeIII, FeII TiII, CaII HeI Hα SiII CII v ~ r OI
Velocity at the photosphere, as inferred from Fe II lines, is plotted against time after maximum light. The line is a power-law fit to the data, with SN 1998dt at 32 days (open circle) excluded (Figure 22 from Branch, D. et al. 2002, ApJ, 566, 1005). Squares (SN 2008D) and Diamonds (SN 2006aj) are photosphere velocities, inferred from our spectra.
The first result of the GRB optical identification (with objects already known before): GRBs are identified with ordinary (or the most numerous in the Universe) galaxies up to 28 st. magnitudes and more. The GRB hosts should not be special, but normal field star-forming galaxies at comparable redshifts and magnitudes. • The second result of the GRB identification: now the long-duration GRBs are identified with (may be) ordinary (massive) core-collapse supernovae (CC-SNe, see in the poster report). • So, we have the massive star-forming in GRB hosts and massive star explosions – • CC-SN/GRB
The popular conception of the relation between long-duration GRBs and core-collapse SNe (the picture from Woosley and Heger , 2006) 56Ni synthesized behind the shock wave Shematic model of asymmetric explosion of a GRB/SN progenitor …a strongly non-spherical explosion may be a generic feature of core-collapse supernovae of all types. …Though while it is not clear that the same mechanism that generates the GRB is also responsible for exploding the star. astro-ph/0603297 Leonard, Filippenko et al. The shock breaks out through the wind The wind envelope of size ~1013 cm Though the phenomenon (GRB) is unusual, but the object-source (SN) is not too unique. The closer a GRB is, the more features of a SN.
The search for differences between nearbySNe identified with GRBs and distant SNe which are to be identified with GRBs can be an additional observational cosmological test. • We can ask a question analogous to that on GRB hosts:Do GRB SNe differ from usual (e.g. local) SNe? What are redshifts at which CC-SNe are quite different from local CC-SNe? • It could bethe third important result of the GRB identification.
GRB 090429B на z = 9.4 (Cucchiara et al. 2011) GRB 090423 на z = 8.26 (Salvaterra et al. 2009; Tanvir et al. 2009), GRB 080913 на z = 6.7 (Greiner et al. 2009), GRB 050904 на z = 6.3 (Kawai et al. 2006; Totani et al. 2006) (Самое большоее красное смещение квазаров z = 7.085 (Mortlock et al. 2011) и z = 6.41 (Willott et al. 2003).) Chandra et al. (2010) сообщили об открытии послесвечения в радиодиапазоне (SNe?) от GRB 090423 (z=8.26), а Frail et al. (2006) для GRB 050904 (z = 6.3). Наблюдения послесвечений позволяют определить физические свойства взрыва и околозвездной среды. Интересно было бы поискать такие разные признаки в послесвечениях GRB на больших и малых красных смещениях.
arXiv:astro-ph/0309217, Yonetoku et al. The distribution of luminosity vs. redshift derived from the Ep–luminosity relation.The truncation(усечение) of the lower end of the luminosity is caused by the flux limit of Flimit =1 × 10^−7 erg cm^−2s^−1. The inserted figure is the cumulative luminosity function in theseveral redshift ranges. The luminosity evolution exists because the break-luminosity increasetoward the higher redshift.
The monitoring of GRB afterglows and the study of their host galaxies with the SAO RAS 6-m telescope from 1997V. Sokolov et al. • The first resultof the GRB optical identification (with objects already known before): GRBs are identified with ordinary (or the most numerous in the Universe) galaxies up to 28 st. magnitudes and more. • The GRB hosts should not be special, but normal field star forming galaxies at comparable redshifts and magnitudes.
(2011)arXiv:astro-ph/1011.4506 F. Mannucci, R. Salvaterra, M. A. Campisi We have compared the metallicity properties of a sample of 18 GRB host galaxies with those of the local field population. In particular, we have found that GRB hosts do follow the Fundamental Metallicity Relation(FMR) recently found by Mannucci et al. (2010). This fact implies that GRB hosts do not differ substantially from the typical galaxy population. The typical low, sub-solar metallicity found in many recent studies (e.g., Savaglio et al. 2009; Levesque et al. 2010b and references therein) does not necessary mean that GRBs occur in special, low metallicity galaxies, as the exception of GRB 020819 (with 12 + log(O/H) = 8.9) clearly shows , and that a direct link between low metallicity and GRB production exists.
И основные выводы по GRB-галактикам: • Если GRBs отождествляются с обычными галактиками, то • GRB-hosts – инструмент…
arXiv:0911.1356, by Labbe et al. (2009) Broadband SEDs of the z ~7z850−dropout galaxies from our NICMOS, WFC3/UDF and WFC3/ERS samples,averaged in 1−mag bins centered on H160 26, 27 and 28. The data include HST ACS, NICMOS, and FC3/IR, groundbased K, andIRAC [3.6] and [4.5]. The best-fit BC03 stellar population models at z = 6.9 are shown. The overall SED shapes are remarkably similar, witha Balmer break between H160 and [3.6], indicative of evolved stellar populations(> 100Myr). The far−UV slope (traced by 125 − H160)bluens significantly towards fainter H160 magnitude (as found Bouwens et al. 2009b). Upper limits are 2. ACS optical measurementsare non-detections fainter than 29.4 mag.
arXiv:astro-ph/0309217, Yonetoku et al. The distribution of luminosity vs. redshift derived from the Ep–luminosity relation.The truncation(усечение) of the lower end of the luminosity is caused by the flux limit of Flimit =1 × 10^−7 erg cm^−2s^−1. The inserted figure is the cumulative luminosity function in theseveral redshift ranges. The luminosity evolution exists because the break-luminosity increasetoward the higher redshift.
1109.0990,Главное в докладе: The connection between the rate of GRBs˙nGRB(z)and ˙ρ⋆(z), ˙nGRB(z) = ψ(z)˙ρ⋆(z)
arXiv:1109.0990, Robertson & Ellis …the GRB-derived star formation rate, clearly exceed the stellar mass density ρstarat all redshifts.
GRB 090429B на z = 9.4 (Cucchiara et al. 2011) является в настоящее время рекордным объектом, GRB 090423 на z = 8.26 (Salvaterra et al. 2009; Tanvir et al. 2009), GRB 080913 на z = 6.7 (Greiner et al. 2009), GRB 050904 на z = 6.3 (Kawai et al. 2006; Totani et al. 2006) (Самое большоее красное смещение квазаров z = 7.085 (Mortlock et al. 2011) и z = 6.41 (Willott et al. 2003).) Chandra et al. (2010) сообщили об открытии послесвечения в радиодиапазоне (SNe?) от GRB 090423 (z=8.26), а Frail et al. (2006) для GRB 050904 (z = 6.3). Наблюдения послесвечений позволяют определить физические свойства взрыва и околозвездной среды. Интересно было бы поискать такие разные признаки в послесвечениях GRB на больших и малых красных смещениях.
astro-ph/1303.0844 X-ray absorption evolution in Gamma-Ray Bursts: intergalactic medium or evolutionary signature of their host galaxies?
astro-ph/1303.0844 • This naturally led to the suggestion that excess X-ray absorption could be used as some kind of redshift indicator, • at least in the sense that bursts with high excess would be expected to be at low redshift (Grupe et al. 2007). • In practice, this indicator has proven of limited value, in part because in many cases the measurement uncertainties are quite high, • but more pertinently(уместный) for this work, also because many higher redshift bursts exhibit surprisingly high excess absorption.