1 / 69

Red-Black Trees

Red-Black Trees. Definitions and Bottom-Up Insertion. Red-Black Trees. Definition: A red-black tree is a binary search tree in which: Every node is colored either Red or Black. Each NULL pointer is considered to be a Black “node”. If a node is Red, then both of its children are Black.

yonah
Download Presentation

Red-Black Trees

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Red-Black Trees DefinitionsandBottom-Up Insertion

  2. Red-Black Trees • Definition: A red-black tree is a binary search tree in which: • Every node is colored either Red or Black. • Each NULL pointer is considered to be a Black “node”. • If a node is Red, then both of its children are Black. • Every path from a node to a NULL contains the same number of Black nodes. • By convention, the root is Black • Definition: The black-height of a node, X, in a red-black tree is the number of Black nodes on any path to a NULL, not counting X. UMBC CSMC 341 Red-Black-Trees-1

  3. X A Red-Black Tree with NULLs shown Black-Height of the tree (the root) = 3Black-Height of node “X” = 2 UMBC CSMC 341 Red-Black-Trees-1

  4. A Red-Black Tree with Black-Height = 3 UMBC CSMC 341 Red-Black-Trees-1

  5. X Black Height of the tree? Black Height of X? UMBC CSMC 341 Red-Black-Trees-1

  6. Bottom –Up Insertion • Insert node as usual in BST • Color the node Red • What Red-Black property may be violated? • Every node is Red or Black? • NULLs are Black? • If node is Red, both children must be Black? • Every path from node to descendant NULL must contain the same number of Blacks? UMBC CSMC 341 Red-Black-Trees-1

  7. Bottom Up Insertion • Insert node; Color it Red; X is pointer to it • Cases 0: X is the root -- color it Black 1: Both parent and uncle are Red -- color parent and uncle Black, color grandparent Red. Point X to grandparent and check new situation. 2 (zig-zag): Parent is Red, but uncle is Black. X and its parent are opposite type children -- color grandparent Red, color X Black, rotate left(right) on parent, rotate right(left) on grandparent 3 (zig-zig): Parent is Red, but uncle is Black. X and its parent are both left (right) children -- color parent Black, color grandparent Red, rotate right(left) on grandparent UMBC CSMC 341 Red-Black-Trees-1

  8. G X P U G X P U Case 1 – U is Red Just Recolor and move up UMBC CSMC 341 Red-Black-Trees-1

  9. G P U X X S P G Case 2 – Zig-Zag Double Rotate X around P; X around G Recolor G and X S U UMBC CSMC 341 Red-Black-Trees-1

  10. G P U S P X X G Case 3 – Zig-Zig Single Rotate P around G Recolor P and G U S UMBC CSMC 341 Red-Black-Trees-1

  11. UMBC CSMC 341 Red-Black-Trees-1

  12. 11 Insert 4 into this R-B Tree 14 2 15 1 7 5 8 Red node Black node UMBC CSMC 341 Red-Black-Trees-1

  13. Possible insertion configurations X (Red or Black) Y Z If a new node is inserted as a child of Y or Z, there is no problem since the new node’s parent is black

  14. Possible insertion configurations X Y Z If new node is child of Z, no problem since Z is black. If new node is child of Y, no problem since the new node’s uncle (Z) is black – do a few rotations and recolor…. done

  15. Possible insertion configurations X Y Z If new node is inserted as child of Y or Z, it’s uncle will be red and we will have to go back up the tree. This is the only case we need to avoid.

  16. Top-Down Traversal As we traverse down the tree and encounter this case, we recolor and possible do some rotations. There are 3 cases. X Z Y Remember the goal – to create an insertion point at which the parent of the new node is Black, or the uncle of the new node is black.

  17. Case 1 – X’s Parent is Black P P X X Z Y Y Z Just recolor and continue down the tree

  18. Case 2 • X’s Parent is Red (so Grandparent is Black) and X and P are both left/right children • Rotate P around G • Color P black • Color G red • Note that X’s uncle, U, must be black because it (a) was initially black, or (b) would have been made black when we encountered G (which would have had two red children -- X’s Parent and X’s uncle)

  19. Case 2 diagrams G P P U G X X S Z Z S U Y Y Rotate P around G. Recolor X, Y, Z, P and G

  20. Case 3 • X’s Parent is Red (so Grandparent is Black) and X and P are opposite children • Rotate P around G • Color P black • Color G red • Again note that X’s uncle, U, must be black because it (a) was initially black, or (b) would have been made black when we encountered G (which would have had two red children -- X’s Parent and X’s uncle)

  21. Case 3 Diagrams (1 of 2) G G X U P U P Z S X Y S Y Z Step 1 – recolor X, Y and Z. Rotate X around P.

  22. Case 3 Diagrams (2 of 2) X G X U G P P Z Z U S Y Y S Step 2 – Rotate X around G. Recolor X and G

  23. An exercise – insert F D T W L P Z J V E K

  24. Top-Down Insert Summary Case 1 P is Black Just Recolor Recolor X,Y,Z P P X X Y Z Y Z Case 2P is RedX & P both left/right Rotate P around GRecolor P,G P G G RecolorX,Y,Z G X P P Y Z X X Y Y Z Z G G X Case 3P is RedX and P are opposite children Recolor X,Y,Z Rotate X around P G Rotate X around GRecolor X, G X P P P X Y Z Y Z Y Z

  25. Insertion Practice Insert the values 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty Red-Black Tree UMBC CSMC 341 Red-Black-Trees-1

  26. Top-Down Insertion An alternative to this “bottom-up” insertion is “top-down” insertion. Top-down is iterative. It moves down the tree, “fixing” things as it goes. What is the objective of top-down’s “fixes”? UMBC CSMC 341 Red-Black-Trees-1

  27. Red Black Trees Top-Down Deletion

  28. Recall the rules for BST deletion • If vertex to be deleted is a leaf, just delete it. • If vertex to be deleted has just one child, replace it with that child • If vertex to be deleted has two children, replace the value of by it’s in-order predecessor’s value then delete the in-order predecessor (a recursive step)

  29. What can go wrong? • If the delete node is red?Not a problem – no RB properties violated • If the deleted node is black?If the node is not the root, deleting it will change the black-height along some path

  30. The goal of T-D Deletion • To delete a red leaf • How do we ensure that’s what happens? • As we traverse the tree looking for the leaf to delete, we change every node we encounter to red. • If this causes a violation of the RB properties, we fix it

  31. Bottom-Up vs. Top-Down • Bottom-Up is recursive • BST deletion going down the tree (winding up the recursion) • Fixing the RB properties coming back up the tree (unwinding the recursion) • Top-Down is iterative • Restructure the tree on the way down so we don’t have to go back up

  32. Terminology • Matching Weiss text section 12.2 • X is the node being examined • T is X’s sibling • P is X’s (and T’s) parent • R is T’s right child • L is T’s left child • This discussion assumes X is the left child of P. As usual, there are left-right symmetric cases.

  33. Basic Strategy • As we traverse the tree, we change every node we visit, X, to Red. • When we change X to Red, we know • P is also Red (we just came from there) • T is black (since P is Red, it’s children are Black)

  34. Step 1 – Examine the root • If both of the root’s children are Black • Make the root Red • Move X to the appropriate child of the root • Proceed to step 2 • Otherwise designate the root as X and proceed to step 2B.

  35. Step 2 – the main case As we traverse down the tree, we continually encounter this situation until we reach the node to be deleted X is Black, P is Red, T is Black We are going to color X Red, then recolor other nodes and possibly do rotation(s) based on the color of X’s and T’s children 2A. X has 2 Black children 2B. X has at least one Red child

  36. Case 2AX has two Black Children 2A1. T has 2 Black Children 2A2. T’s left child is Red 2A3. T’s right child is Red** if both of T’s children are Red, we can do either 2A2 or 2A3 P X T

  37. Case 2A1X and T have 2 Black Children P P X T X T Just recolor X, P and T and move down the tree

  38. Case 2A2 X has 2 Black Children and T’s Left Child is Red Rotate L around T, then L around PRecolor X and P then continue down the tree L P T P X T L L1 L2 X L1 L2

More Related