100 likes | 365 Views
Finding IRR & ERR by using TI-86 calculator Engineering Economics ENGR 4223. By CHIN CHEE KOO 10/14/02. Finding IRR using TI-86. Using Future Worth Method. 7000*(1+i)^3 + 7000*(1+i)^2 + 7000*(1+i) + 12000 = 15000*(1+i)^4
E N D
Finding IRR & ERRby using TI-86 calculatorEngineering EconomicsENGR 4223 By CHIN CHEE KOO 10/14/02
Using Future Worth Method 7000*(1+i)^3 + 7000*(1+i)^2+ 7000*(1+i) + 12000 = 15000*(1+i)^4 -15000*(1+i)^4 + 7000*(1+i)^3 + 7000*(1+i)^2+ 7000*(1+i) + 12000 = 0 Let X = (1+i) , where X >=1 -15000* X^4 + 7000* X^3 + 7000* X^2+ 7000* X + 12000 = 0
-15000* X^4 + 7000* X^3 + 7000* X^2+ 7000* X + 12000 = 0 where X >=1 Press “2nd” and then, “PRGM”
-15000* X^4 + 7000* X^3 + 7000* X^2+ 7000* X + 12000 = 0 where X >=1 Enter the Highest Order (power) , then “ENTER”
-15000* X^4 + 7000* X^3 + 7000* X^2+ 7000* X + 12000 = 0 where X >=1
-15000* X^4 + 7000* X^3 + 7000* X^2+ 7000* X + 12000= 0 where X >=1 Enter values, then press “F5” to solve it!
-15000* X^4 + 7000* X^3 + 7000* X^2+ 7000* X + 12000 = 0 where X >=1 Solution Page Only 1.36871736592 is valid answer for X
7000*(1+MARR)^3 + 7000*(1+MARR)^2+ 7000*(1+MARR) + 12000 = 15000*(1+i)^4