1 / 12

Required Sample Size to Estimate  Within a Specified M argin of Error With a Desired Level of Confidence

Required Sample Size to Estimate  Within a Specified M argin of Error With a Desired Level of Confidence. Chapter 7. Required Sample Size To Estimate a Population Mean .

yosefu
Download Presentation

Required Sample Size to Estimate  Within a Specified M argin of Error With a Desired Level of Confidence

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Required Sample Size to Estimate  Within a Specified Margin of Error With a Desired Level of Confidence Chapter 7

  2. Required Sample Size To Estimate a Population Mean  • If you desire a C% confidence interval for a population mean  with an accuracy specified by you, how large does the sample size need to be? • We will denote the accuracy by ME, which stands for Margin of Error.

  3. Example: Sample Size to Estimate a PopulationMean  • Suppose we want to estimate the unknown mean height  of male students at NC State with a confidence interval. • We want to be 95% confident that our estimate is within .5 inch of  • How large does our sample size need to be?

  4. Confidence Interval for 

  5. Good news: we have an equation • Bad news: • Need to know s • We don’t know n so we don’t know the degrees of freedom to find t*n-1

  6. A Way Around this Problem: Approximate by Using the Standard Normal

  7. Confidence level Sampling distribution of x .95

  8. Estimating s • Previously collected data or prior knowledge of the population • If the population is normal or near-normal, then s can be conservatively estimated by s  range 6 • 99.7% of obs. within 3  of the mean

  9. Example:samplesize to estimate mean height µ of NCSU undergrad. male students We want to be 95% confident that we are within .5 inch of , so • ME = .5; z*=1.96 • Suppose previous data indicates that s is about 2 inches. • n= [(1.96)(2)/(.5)]2 = 61.47 • We should sample 62 male students

  10. Example: Sample Size to Estimate a PopulationMean -Textbooks • Suppose the financial aid office wants to estimate the mean NCSU semester textbook cost  within ME=$25 with 98% confidence. How many students should be sampled? Previous data shows  is about $85.

  11. Example: Sample Size to Estimate a Population Mean -NFL footballs • The manufacturer of NFL footballs uses a machine to inflate new footballs • The mean inflation pressure is 13.5 psi, but uncontrollable factors cause the pressures of individual footballs to vary from 13.3 psi to 13.7 psi • After throwing 6 interceptions in a recent game, Peyton Manning complains that the balls are not properly inflated. The manufacturer wishes to estimate the mean inflation pressure to within .025 psi with a 99% confidence interval. How many footballs should be sampled?

  12. Example: Sample Size to Estimate a Population Mean  • The manufacturer wishes to estimate the mean inflation pressure to within .025 pound with a 99% confidence interval. How may footballs should be sampled? • 99% confidence  z* = 2.576; ME = .025 •  = ? Inflation pressures range from 13.3 to 13.7 psi • So range =13.7 – 13.3 = .4;   range/6 = .4/6 = .067 . . . 1 2 3 48

More Related