1 / 24

EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 - Spring 2004

EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 - Spring 2004. Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/. Reverse Early VAR extraction. VAR eff = - i E /[  i E /  v BE ] vBC VAR was set at 200V for this data When v BE = 0

yuma
Download Presentation

EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 - Spring 2004

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EE5342 – Semiconductor Device Modeling and CharacterizationLecture 23 - Spring 2004 Professor Ronald L. Carter ronc@uta.edu http://www.uta.edu/ronc/

  2. Reverse EarlyVAR extraction VAReff = -iE/[iE/vBE]vBC • VAR was set at 200V for this data • When vBE = 0 vBC = 0.75VAR=200.5 vBC = 0.85VAR=200.2 vBC = 0.75 V vBC = 0.85 V VAReff(V) vs. vEC (V)

  3. Forward EarlyVAf extraction VAFeff = -iC/[iC/vBC]vBE • VAF was set at 100V for this data • When vBC = 0 vBE = 0.75VAF=101.2 vBE = 0.85VAF=101.0 vBE = 0.75 V vBE = 0.85 V VAFeff(V) vs. vCE (V)

  4. Forward ActiveHybrid-pi Circuit model Fig 9.33*

  5. Gummel PoonBase Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)aRB

  6. h11_vs_ib

  7. h11_vs_frequency

  8. h11_vs_1/ib

  9. Gummel-Poon Staticnpn Circuit Model C RC Intrinsic Transistor C’ IBR B RBB ILC IBF B’ ILE E’ RE E

  10. IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2} Gummel Poon npnModel Equations

  11. iC RC vBC - iB + + RBB vBE - vBEx RE BJT CharacterizationForward Gummel vBCx= 0 = vBC + iBRB - iCRC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)  (1-vBC/VAF-vBE/VAR ) {IKF terms}-1 vBE = vBEx –iBRBB -(iB+iC)RE

  12. Sample fg data forparameter extraction • IS = 10f • NF = 1 • BF = 100 • Ise = 10E-14 • Ne = 2 • Ikf = .1m • Var = 200 • Re = 1 • Rb = 100 iC, iB vs. vBEext iC data iB data

  13. Definitions ofNeff and ISeff • In a region where iC or iB is approxi-mately a single exponential term, then iC or iB ~ ISeffexp (vBEext /(NFeffVt) where Neff={dvBEext/d[ln(i)]}/Vt, and ISeff = exp[ln(i) - vBEext/(NeffVt)]

  14. Simple extractionof IS, ISE from data Data set used • IS = 10f • ISE = 10E-14 Flat ISeff for iC data = 9.99E-15 for 0.230 < vD < 0.255 Max ISeff value for iB data is 8.94E-14 for vD = 0.180 iC data iB data ISeff vs. vBEext

  15. Forward Gummelextr. of IS and IS/BF ISextr – should to Neff at same point IS/BF extr

  16. Simple extraction of NF, NE from fg data Data set used NF=1 NE=2 Flat Neff region from iC data = 1.00 for 0.195 < vD < 0.390 Max Neff value from iB data is 1.881 for 0.180 < vD < 0.181 iB data iC data NEeff vs. vBEext

  17. Simple extractionof BF from data • Data set used BF = 100 • Extraction gives max iC/iB = 92 for 0.50 V < vD < 0.51 V 2.42A< iD < 3.53A • Minimum value of Neff =1 for slightly lower vD and iD iC/iB vs. iC

  18. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB

  19. RC vBCx vBC - iB + + RB vBE - RE iE BJT CharacterizationReverse Gummel vBEx= 0 = vBE+ iBRB- iERE vBCx = vBC+iBRB+(iB+iE)RC iB = IBR + ILC = (IS/BR)expf(vBC/NRVt) + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt) (1-vBC/VAF-vBE/VAR ) {IKR terms}-1

  20. Sample rg data forparameter extraction • IS=10f • Nr=1 • Br=2 • Isc=10p • Nc=2 • Ikr=.1m • Vaf=100 • Rc=5 • Rb=100 iB data iE data iE, iB vs. vBCext

  21. Reverse GummelData Sensitivities Region a - IKRIS, RB, RC, NR, VAF Region b - IS, NR, VAF, RB, RC Region c - IS/BR, NR, RB, RC Region d - IS/BR, NR Region e - ISC, NC c vBCx = 0 a d e b iB iE iE(A),iB(A) vs. vBC(V)

  22. Simple extraction of NR, NC from rg data Data set used Nr = 1 Nc = 2 Flat Neff region from iE data = 1.00 for 0.195 < vBC < 0.375 Max Neff value from iB data is 1.914 for 0.195 < vBC < 0.205 iB data iE data NEeff vs. vBCext

  23. Simple extractionof IS, ISC from data Data set used • IS = 10fA • ISC = 10pA Min ISeff for iE data = 9.96E-15 for vBC = 0.200 Max ISeff value for iB data is 8.44E-12 for vBC = 0.200 iB data iE data ISeff vs. vBCext

  24. Simple extractionof BR from data • Data set used Br = 2 • Extraction gives max iE/iB = 1.7 for 0.48 V < vBC < 0.55V 1.13A< iE < 14.4A • Minimum value of Neff =1 for same range iE/iB vs. iE

More Related