1 / 14

>> n=0:3 n = 0 1 2 3 >> mod(n-2,4) ans = 2 3 0 1 >> x=1:4 x =

>> n=0:3 n = 0 1 2 3 >> mod(n-2,4) ans = 2 3 0 1 >> x=1:4 x = 1 2 3 4 >> x(mod(n-2,4)+1) ans = 3 4 1 2. >> n=0:10; x=10*(0.8).^n; >> y=x(mod(-n,11)+1);

Download Presentation

>> n=0:3 n = 0 1 2 3 >> mod(n-2,4) ans = 2 3 0 1 >> x=1:4 x =

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. >> n=0:3 n = 0 1 2 3 >> mod(n-2,4) ans = 2 3 0 1 >> x=1:4 x = 1 2 3 4 >> x(mod(n-2,4)+1) ans = 3 4 1 2

  2. >> n=0:10; x=10*(0.8).^n; >> y=x(mod(-n,11)+1); >> subplot(2,1,1);stem(n,x); axis([-1 11 0 11]);title('Original sequence') >> subplot(2,1,2);stem(n,y); axis([-1 11 0 11]);title('Circularly folded sequence')

  3. >> X=dft(x',11);Y=dft(y',11); >> subplot(2,2,1);stem(n,real(X));title('Real[DFT[x(n)]]'); >> subplot(2,2,2);stem(n,imag(X));title('Imag[DFT[x(n)]]'); >> subplot(2,2,3);stem(n,real(Y));title('real[DFT[x((-n))11]]'); >> subplot(2,2,4);stem(n,imag(Y));title('imag[DFT[x((-n))11]]');

  4. function [xec, xoc]=circevod(x) % real-value signal decomposition into circular-even %and circular-odd parts if any(imag(x)~=0) error('x is not a real sequence') end N=length(x); n=0:(N-1); xec=0.5*(x+x(mod(-n,N)+1)); xoc=0.5*(x-x(mod(-n,N)+1));

  5. >> n=0:10; x=10*(0.8).^n; >> [xec,xoc]=circevod(x); >> subplot(2,1,1); stem(n,xec);title('Circular-even component') >> subplot(2,1,2); stem(n,xoc);title('Circular-odd component')

  6. >> X=dft(x',11); Xec=dft(xec',11);Xoc=dft(xoc',11); >> Xec Xec = 45.7050 10.1671 + 0.0000i 6.2575 + 0.0000i 5.4515 5.1827 - 0.0000i 5.0887 - 0.0000i 5.0887 - 0.0000i 5.1827 - 0.0000i 5.4515 - 0.0000i 6.2575 - 0.0000i 10.1671 - 0.0000i >> Xoc Xoc = -0.0000 0.0000 -13.4479i 0.0000 - 6.8202i 0.0000 - 3.8755i 0.0000 - 2.0562i 0.0000 - 0.6489i 0.0000 + 0.6489i 0.0000 + 2.0562i -0.0000 + 3.8755i -0.0000 + 6.8202i -0.0000 +13.4479i

  7. >> subplot(2,2,1);stem(n,real(X));title('Real[DFT[x(n)]]') >> subplot(2,2,2);stem(n,imag(X));title('Imag[DFT[x(n)]]') >> subplot(2,2,3);stem(n,real(Xec));title('DFT[xec(n)]') >> subplot(2,2,4);stem(n,imag(Xoc));title('Imag[DFT[xoc(n)]]')

  8. >> n=0:10; x=10*(0.8).^n; y=cirshift(x,6,15); >> n=0:14; x=[x,zeros(1,4)]; >> subplot(2,1,1); stem(n,x);title('x(n)') >> subplot(2,1,2); stem(n,y);title('x((n-6))15')

  9. >> X=dft(x',15); >> wn=exp(-j*2*pi/15); >> wn.^(6*[0:14]').*X ans = 45.7050 -22.6391 + 7.9023i 13.4175 + 5.1388i -3.4939 - 8.4318i -1.8380 + 6.6090i 5.7729 - 3.3882i -5.7632 - 2.4191i 1.7576 + 4.9755i 1.7576 - 4.9755i -5.7632 + 2.4191i 5.7729 + 3.3882i -1.8380 - 6.6090i -3.4939 + 8.4318i 13.4175 - 5.1388i -22.6391 - 7.9023i >> Y=dft(y',15) Y = 45.7050 -22.6391 + 7.9023i 13.4175 + 5.1388i -3.4939 - 8.4318i -1.8380 + 6.6090i 5.7729 - 3.3882i -5.7632 - 2.4191i 1.7576 + 4.9755i 1.7576 - 4.9755i -5.7632 + 2.4191i 5.7729 + 3.3882i -1.8380 - 6.6090i -3.4939 + 8.4318i 13.4175 - 5.1388i -22.6391 - 7.9023i

  10. >> n=0:10; x=10*(0.8).^n; >> wn=exp(-j*2*pi/11);dft(wn.^(-4*(0:10)').*x',11) ans = 5.1827 + 2.0562i 5.4515 + 3.8755i 6.2575 + 6.8202i 10.1671 +13.4479i 45.7050 + 0.0000i 10.1671 -13.4479i 6.2575 - 6.8202i 5.4515 - 3.8755i 5.1827 - 2.0562i 5.0887 - 0.6489i 5.0887 + 0.6489i >>X=dft(x',11);cirshift(X,4,11) ans = 5.1827 + 2.0562i 5.4515 + 3.8755i 6.2575 + 6.8202i 10.1671 +13.4479i 45.7050 10.1671 -13.4479i 6.2575 - 6.8202i 5.4515 - 3.8755i 5.1827 - 2.0562i 5.0887 - 0.6489i 5.0887 + 0.6489i

  11. function y=cirshift(x,m,N) %circular shift y(n)=x((n-m)mod N) if length(x)>N error('N must be >= the length of x') end x=[x zeros(1, N-length(x))]; n=[0:1:N-1]; n=mod(n-m,N); y=x(n+1);

  12. >> x1=[1 2 2 0];X1=dft(x1',4); >> x2=[1 2 3 4];X2=dft(x2',4); >> idft(X1.*X2,4) ans = 15.0000 + 0.0000i 12.0000 + 0.0000i 9.0000 - 0.0000i 14.0000 - 0.0000i

  13. function y=circonvt(x1,x2,N) %N-point circular convolution between x1 and x2 (time domain) if length(x1)>N error('N must be >= the length of x1') end if length(x2)>N error('N must be >= the length of x2') end x1=[x1 zeros(1,N-length(x1))]; x2=[x2 zeros(1,N-length(x2))]; m=[0:1:N-1]; x2=x2(mod(-m,N)+1); %circular folding H=zeros(N,N); for n=1:1:N, H(n,:)=cirshift(x2,n-1,N); end y=H*x1';

  14. >> x1=[1 2 2]; x2=[1 2 3 4] >> y=circonvt(x1,x2,4) y = 15 12 9 14

More Related