50 likes | 196 Views
Scale (km). 1800. 180. 18. 1.8. 0.18. 0.018. Van de Hoven. 100 m. Operational model Grid-size. Can current boundary layer turbulence parameterization schemes realistically represent the turbulent transport in high hurricane wind conditions? How can we predict the HBL organized
E N D
Scale (km) 1800 180 18 1.8 0.18 0.018 Van de Hoven 100 m Operational model Grid-size • Can current boundary layer turbulence parameterization schemes realistically represent the turbulent transport in high hurricane wind conditions? • How can we predict the HBL organized structures and the associated damaging winds for hurricane wind damage Mitigation? clouds turbulence Parameterization Large eddy simulation
Classic Large eddy simulation (LES) • Simulation domain cannot be very large, typically about tens of kilometers. • Initialized with idealized vertical profiles and forced with uniform surface conditions and horizontal homogeneous large-scale atmospheric forcings. • Hurricane vortex is a moving target. • Swirling hurricane wind changes the speed and direction continuously. Classic LES cannot be used to study HBL
WRF large-eddy simulation (WRF-LES) Hurricane Ivan Portable Wind Tower (PWT)
The problem can be solved by increasing model resolution so that small scale processes, such as large turbulent eddies and clouds, are explicitly resolved. • LES can be executed in a weather forecasting mode by nesting an LES domain in mesoscale models (Zhu 2007). • Such multi-scale simulations open the door to simulate background flow, hurricane vortex, and down to turbulent eddies in a unified system. PROPOSAL : Developmen of a multi-scale modeling system from Weather Forecast & Research (WRF) model including an online LES domain to explicitly simulate large turbulent eddies in a weather forecasting mode.