1 / 1

Control of methane hydrate formation at the molecular level

Control of methane hydrate formation at the molecular level. Tadanori Koga, Department of Materials Science and Engineering, Stony Brook University.

Download Presentation

Control of methane hydrate formation at the molecular level

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Control of methane hydrate formation at the molecular level Tadanori Koga, Department of Materials Science and Engineering, Stony Brook University Natural gas hydrates owe their existence to the ability of water molecules to assemble via hydrogen bonding and form polyhedral cavities in which trapped methane molecules reside. Though initial interest in understanding gas hydrate formation focused on flow assurance to avoid gas pipeline plugging, it is now being considered for applications such as an alternative to desalination technology, potentially a huge natural gas reserve, and natural gas transport alternative to liquefied natural gas (LNG) due to high energy density. A recognizable problem in utilizing the versatility of gas hydrate route is the uncertainty in the hydrate formation process that can take from few minutes to several days. This proposal seeks to undertake a fundamental study to help understand the hydrate nucleation process at the interface. We have custom built a cell to study the natural gas hydrate interfacial phenomenon. A major focus of the study was to measure hydrate nucleation using neutron reflectivity at NIST, which allows detection of nanoscale processes at the earliest stage of the nucleation, and laser light reflectivity, which is sensitive to the micron scale surface structures. These surface sensitive techniques clarified that the microscopic hydrate formation was always triggered within 1 min within the hydrate stable region in the phase diagram and metastable during the induction period. At the end of the induction period, which was independently determined by methane gas pressure trace experiments, the microscopic nuclei abruptly (within 30s) grew into the micron-scale hydrates. 2d-detector High-pressure cell Diffuse scattering (surface structure) Neutrons Methane Specular component (layer structure) Detector Water NG7, NIST

More Related