140 likes | 258 Views
Harmonic lasing in the LCLSII SXR beamline. G. Marcus, Y. Ding, Z. Huang 11/21/2013. Outline. Motivation Beamline geometry Steady-state analysis 3 rd harmonic Time-dependent GENESIS 3 rd harmonic of E γ = 1.24 keV Various configurations (intra- undulator phase shifts).
E N D
Harmonic lasing in the LCLSII SXR beamline G. Marcus, Y. Ding, Z. Huang 11/21/2013
Outline • Motivation • Beamline geometry • Steady-state analysis • 3rd harmonic • Time-dependent GENESIS • 3rd harmonic of Eγ = 1.24 keV • Various configurations (intra-undulator phase shifts)
Motivation • Harmonic lasing can be a cheap and relatively efficient way to extend the photon energy range of a particular FEL beamline • In comparison to nonlinear harmonics, can provide a beam that is more • Intense • Stable • Narrow-band • Suppression by • Phase shifters • Spectral filtering
Beamline geometry – nominal layout Quad Phase shifter Undulator Modeled in GENESIS using AD parameter in drift
Simulation parameters – ideal beam Insert Presentation Title in Slide Master • e-beam • E = 4 GeV • I = 1.0 kA • εn ~ 0.45 μm • σE ~ 500 keV • <β> = 12 m • Undulator • λu= 39 mm • Nper = 85 • L = 3.315 m • Lbreak = 1.17 m (30 per) • Simulated half for slippage • K ~ 2.07 • λr = 1 nm
Time-dependent, nonlinear harmonics Psat ~ 2.8 GW FWHM ~ 0.68 eV
Time-dependent, nonlinear harmonics Psat ~ 39 MW Relative spectral bandwidth is roughly constant 5.4e-4vs 4.7e-4 FWHM ~ 1.76 eV
Harmonic lasing, phase shift of 2π/3 (λ/3), steady-state Phase shifters kill the fundamental
Harmonic lasing – 3rd harmonic FWHM ~ 0.99 eV P ~ 342 MW