1 / 18

IIB on K3 £ T 2 /Z 2 orientifold + flux and D3/D7: a supergravity view-point

IIB on K3 £ T 2 /Z 2 orientifold + flux and D3/D7: a supergravity view-point. Dr. Mario Trigiante (Politecnico di Torino). Plan of the Talk. General overview: Compactification with Fluxes and Gauged Supergravities. Type IIB on K3 x T 2 / Z 2 orientifold + fluxes and D3/D7 branes. +.

zanna
Download Presentation

IIB on K3 £ T 2 /Z 2 orientifold + flux and D3/D7: a supergravity view-point

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. IIB on K3£ T2/Z2 orientifold + flux and D3/D7:a supergravity view-point Dr. Mario Trigiante (Politecnico di Torino)

  2. Plan of the Talk • General overview: Compactification with Fluxes and Gauged Supergravities. • Type IIB on K3 x T2/ Z2 orientifold + fluxes and D3/D7 branes. + N = 2 Gauged SUGRA • N = 2, 1, 0 vacua, super-BEH mechanism and no-scale structure. • Conclusions

  3. Low-energy • D=4 SUGRA: plethora of scalar fields  (moduli from geometry of M) From D=10,11: add fluxes • Realistic models from String/M-theory )V()  0, In D=4: gauging (predictive, spontaneous SUSY, cosmological constant…) Superstring Theory in D=10 M-Theory in D=11 Compactified on R1,3£ M7 Compactified on R1,3£ M6 Supergravity in D=4

  4. Type II flux-compactifications (+branes):very tentative (and rather incomplete) list of references

  5. M1,3 x K3 x T2 x0 x1 x2 x3x4 x5 x6 x7x8 x9 R-R Arm, yr = yr,8+i yr,9 (r=1,…, n3) NS-NS u = C(0)- i e - f2 Akm, xk = xk,8+i xk,9 (k=1,…,n7) IIB on K3 x T2/Z2 - orientifold with D3/D7: • Type IIB bosonic sector: gMN, , B(2) C(0),C(2),C(4) (B(2),C(2))´ (B(2)) 2 2 • SL(2,R)u global symmetry: • Compactification to D=4 and branes: Low-en. brane dynamics: SYM (Coulomb ph.) on w.v. n3 D3 £ £££ - - - - - - n7D7 £ £££££££- -

  6. K3 manifold (CY2): {x4, x5, x6, x7} ! Basis of H2(K3,R): {wI},I = {m, a} m=1,2,3 a=1,…,19 Complex struct. moduli (W2) Kaehler moduli (J2) (except Vol(K3)) ( ema) $ L(e) 2 Complex struct.: Volume: Moduli from geometry of internal manifold • T2 : {xp} (p=8,9)

  7.  I2 (-)FL • Orientifold proj. wrt Surviving bulk fields [L = (a,p) = 0,…,3] L 2 (2,2) = 4 of SL(2)u x SL(2)t = SO(4) zA,1 Cm, Gmn yAm A0m zA,a ema , Ca A1m lA,1 S A2m lA,2 t A3m lA,3 u Akm lA,k xk Arm lA,r yr [ ] MQ  = world-sheet parity ) I2 (T2): xp ! - xp ß N=2 SUGRA in D=4 (ungauged) Define complex scalars = C(4)K3– i Vol(K3)E nv = 3 + n7 +n3 20 Scalars in non-lin. s-model Mscal = MSK [L(0,n3,n7)] x

  8. Linear action g¢ A B g = 2 G C D s E/M duality promotes G to global sym. of f.eqs. E B. ids. Fmn Fmn Gmn Gmn Global symmetries: Non-linear action onscalars G = Isom(Mscal) Sp(2(nv+1),R) Geometry ofMSK : Hodge-Kaehler manifold, locally described by choice of coordinates {zi} (i=1,…,nv) and by a 2 (nv+1) -dim. section W(z) of a holomorphic symplectic bundle on MSK which fixes couplings between {zi} and the vector field-strengths: (L,S=0,..., nv ) W fixes E/M action of G on vector of f. strengths

  9. ALm Akm Arm SL(2)s Non-pert. Non-pert. SL(2)t pert. SL(2)u pert. Non-pert. Special coordinate basis Wsc(z): zi = Xi /X0 ; F0= - F; Fi = ¶F / ¶ zi Wsc (z) does not reproduce right couplings, i.e. right duality action of G of f. strengths ! Sp – rotation to correct W(z) Correct duality action of G: W in new Sp-basis: ¶s XL= 0 ) F If (n3=0, n7=n) or (n3=n, n7=0),MSK [L(0,n3,n7)] !Symmetric:

  10. Integer ; fixed by tadpole cancellation condition. Switching on fluxes:hsinternal q-cycle F(q)i 0 • Fluxes surviving the orientifold projection: (dB(2), dC(2) )´ (Fa I pwIÆ dxp) • F(3)  0 )Local symmetries in D=4 N=2 SUGRA : C(4) kinetic term in D=10 Stueckelberg-coupling in D=4 F(5)Æ*F(5) (F(5) = dC(4) +eab FaÆ Fb) ( CI– fLI ALm)2 Local translational invariance: CI ! CI + fLIxL ; ALm! ALm+¶mxL 4–dim. abelian gauge-group: G= { XL} $ ALm

  11. In Isom(MQ)=SO(4,20) 22 translational global symmetries {ZI}: CI ! CI + x I Gauge group generators XL are 4 combinations of ZI defined by the fluxes: XL= fLI ZI = fLm Zm+ hLa Za Gauging: promote G ½G to local symmetry of action ß • Vector fields in co-Adj (G) ! gauge vectors • ¶m!rm = ¶m + ALm XL (minimal couplings) Fermion/gravitino SUSY shifts Fermion/gravitino mass terms V(f) ¹ 0 (bilinear in f. shifts) • SUSY of action )

  12. Action of XL on hyper-scalars qu described by Killing vecs. kuLexpressed in terms of momentum maps PLx (x=1,2,3: SU(2) holonomy index):2 kuL Rxuv=rvPLx kmL=fmL; kaL=haL PLx / ej [L(e)-1 xm fmL+ L(e)-1 xa haL] Scalar potential: gaugino > 0 + hyperino > 0 gaugino > 0 + gravitino < 0 Vacua:bosonic b.g. <F (x)>´F0, ¶F V(F0) = 0 SUSY preserving vacua , 9 killing spin.e : de(Fermi)F0= 0

  13. delA,i/ gi jDj XLPLxsx ABeB =0 SUSY vacua Equations for Killing spinor eA dezA,a/ (fLm L-1 am+ hLb L-1 ab) XLeA = 0 dezA,1/ XLPLxsx ABeB =0 deyAm/ XLPLxsx ABeB =0 dezA,a = 0 ) eam fLm = ema hLa = 0; hLa XL=0 • K3 c.s. moduli fixing • PLx / ejfLx • T2 c.s. t fixing • axion/dilaton u fixing deyAm= 0 ; delA,i= 0 )condition on fluxes

  14. t = u • t2= -1+xk xk/2 X2 = X3 = 0 , Ca=1,2 Goldstone eaten by A2,3m N=2 vacua: fLx ´ 0 ß deyAm/ XL fLxsx ABeB = 0 8eA ) Flux has no positive norm vecs. in G3,19 hLa XL=0 has solution ) hLa at most 2 indep. vecs. h2a=1=g2, h3a=2=g3 : t, u fixed s, xk, yr moduli hLa XL=0 ) a=1,2 hypers ema hLa =0 ) exa=1,2´ 0 ) V(F0)´ 0 (independent of moduli) ,effective theory is no-scale

  15. f 3L=0: flux at most 2 norm > 0 vecs.in G3,19 (primitivity of G(3)) , Cm=1,2, Ca=1,2 Goldstone b. Massto Am0,1,2,3 t = u = - i hLa XL=0 ) X2 = X3 = 0 N=1, 0 vacua: e2 Killing spin. : deyAm = 0 , delA,i = 0 f0m=1=g0, f1m=2=g1 h2a=1=g2, h3a=2=g3 delA,i=x= 0 ) xk = 0, i.e. D7 branes fixed at origin of T2 ) a=1,2 hypers eam fLm = ema hLa =0 ) exa=1,2´ 0; ex=1,2a ´ 0 ) K3 c.s.fix

  16. Moduli: s, yr ; Cm=3+i ej, Ca +i em=3a, (a¹ 1,2) Mscal = x Superpotential (classical): g0 = g1 (N=1) W(F0) / e-j [XL (P1L+i P2L)]|0/g0-g1(moduli indep.) g0 ¹ g1 (N=0) V0(moduli) ´ 0 (no-scale) More general N=1 vacua:g 2 SL(2)t£ SL(2)u : t = u = -i ! t0, u0 f , h m t = u = -i f’=g.f , h’=g.h m t = t0, u = u0 )

  17. Conclusions • Discussed instance of correspondence between flux • compactificationand gauged supergravity. • Starting framework for studying more general situations • pert. and non-pert.effects [Becker, Becker et al.; Kachru, Kallosh et al.] • gauging compact isometries ! hybrid inflation [Koyama et al.] • extended N=2 theory with tensor fields (some CI undualized) • [D’Auria et.al]

  18. Vector kinetic terms described by complex matrixNLS (z, z) NLS constructed from W(z): Section W(z) in the new basis:

More Related