1 / 30

Multilevel Methods Toward Accurate Estimation of Thermochemical Properties

1782. II. József. Robert Monckton. Multilevel Methods Toward Accurate Estimation of Thermochemical Properties. Milán Szőri 201 4. The world’s first ice-calorimeter. 2014. „ Virtual calorimeter ”. http://en.wikipedia.org/wiki/Calorimetry

zanta
Download Presentation

Multilevel Methods Toward Accurate Estimation of Thermochemical Properties

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1782 II. József Robert Monckton Multilevel MethodsToward Accurate Estimation of Thermochemical Properties MilánSzőri 2014 The world’sfirstice-calorimeter 2014 „Virtualcalorimeter” http://en.wikipedia.org/wiki/Calorimetry http://gizmodo.com/298029/worlds-biggest-supercomputer-is-a-virus Viktor Orbán

  2. Importance of thermochemical calculations • Predictive power • Check the experiment and its evaluation are done properly „The recommended values of this paper affect a large number of other thermochemical quantities which directly or indirectly rely on or refer to D0(H−OH), D0(OH) and ΔHf(OH).” J. Phys. Chem. A, 2002, 106, 2727–2747. • Check thesevaluesconsistency • Providemissing thermochemical properties • Forunknown species • Unable to measure • Estimation of rate constants • Input in atmospheric and combustion chemistry

  3. ImportantProperties • ClassicalThermochemicalProperties G=H-TS H=U+pV=U+RT IE, IP, BDE, EA etc. • Needed • Geometry (rotationalcontribution and repulsionenergy) • Frequencies (vibrationalcontribution) • Energy Rewardaslittleaspossible!!!

  4. Intermezzo The energy is a function of position and of electrons and nuclei and the time Very high dimension!!!! Decoupling (Separation) of coordinates is highly needed!

  5. Separation in practise Exact nonrelativistic Hamiltonian in field-free space: Nuclei Electron Nuclei Nuclei + Electron Electron Small Constant R is only parameter if the coordinates of nuclei are fixed (PHYSICALLY!!!) Model: Classicaltreatmentfornuclei QM forelectron Clamped-nuclei Schrödinger equation:

  6. Clamped-nuclei Schrödinger equation Electronic Schrödinger equation: Nuclear Schrödinger equation: Electronic energy the nuclei move in a potential set up by the electrons At fixed geometry (PHYSICALLY!!!): Total energy neglected Nuclear-nuclear repulsion Etot≈ Eel+ENN Total energy ≈ (Electronic energy)+ (Nuclear-Nuclear repulsion)

  7. Model • Molecular SE • No generalsolution (highdimension), soinstead: • Clamped-nuclei SE: Classicalnuclei + QM electrons • It is possibletosolveitwithsomeapproximations(seeMolecularMethods) • Itgivessolutionfortheelectronicproblem • Correctionforthenuclei SE (+QM electrons) • Frequencycalculation (Vibrationalanalysis) Approximation of themolecular SE

  8. One consequence of BO • Definition of a molecule: • An electrically neutral entity consisting of more than one atom which must correspond to a depression on the potential energy surface that is deep enough to confine at least one vibrational state. (IUPAC)

  9. Molecular methods • In practiseaccuracy, robustness and system size are coupled • Neat ab initio or ideal DFT • Parametrized methods: • Scaling correlation energies (SAC-x, PCI-80, SCS-MPx) • Extrapolated methods (CBS) • Composite methods/Multilevel methods/Modelchemistry • Applied DFT functionals (B3LYP) • Semiempirical methods (PM6) • Force fields (CHARMM-AA)

  10. Molecular methods • In practiseaccuracy, robustness and system size are coupled • Neat ab initio or ideal DFT • Parametrized methods: • Scaling correlation energies (SAC-x, PCI-80, SCS-MPx) • Extrapolated methods (CBS) • Composite methods/Multilevel methods/Modelchemistry • Applied DFT functionals (B3LYP) • Semiempirical methods (PM6) • Force fields (CHARMM-AA)

  11. Definition • Quantum chemistry multilevelmethods /composite methods/modelchemistries: are computational chemistry methods that aim for high accuracy by combining the results of several(individual) calculations. ci and cjkcan be: dependent independent (!) fromexperimentaldata

  12. Multilevel Methods G2, G3, G2MP2, G3MP2, G3B3, G3MP2B3, G3-RAD, … Purely additive protocols: Extrapolative/additive protocols: CBS-4, CBS-q, CBS-Q, CBS-APNO, W1, W1U, W1BD, W2, W3, W4, … SAC, MCQCISD, MCG3, G3S, G3S(MP2), G3X, … Scaled/additive protocols: BAC-MP4, PDDG/MNDO, PDDG/PM3 Bond-correcting protocols:

  13. MultilevelMethods • Single-Point – trivial method • X1 –Xiamen • Additivity/Extrapolation/Scaled • MCCM - Multicoefficient (correlation) models • Gn – Gaussian • ccCA-x – CorrelationConsistentCompositeApproach • CBS-n – CompleteBasisSet • Wn – Weizmann • HEAT – HighaccuracyExtrapolatedAb initio Thermochemistry Today >1 NO! empiricalparameter(s)

  14. Measuringthecalcs performance • Inthecase of a singlemolecule: • Deviation/Error (D): D=experimentalvalue – calculatedvalue • Absolutedeviation/absoluteerror (AD): AD=abs(D) Relativedeviation (RD): RD=AD/experimentalvalue • Forset of molecules (usually standard test sets): • MeanUnsignedError (MUE): MUE=mean(ADi) • Maximum absolutedeviation (MAD): MAD=max(ADi) • Root-Mean-SquaredError (RMSE): • Standard Deviation (SD): • Errordistribution (Histogram): Chemicalaccuracy:AD< 1 kcal/mol Spectroscopicaccuracy: AD< 1 kJ/mol • MeanDeviation (MD): • MD=mean(Di) • Largestdeviation (LD): • LD=max(Di) RMSE SD

  15. Measuring the calcs performance • Setof molecules (standard test sets): • Often transition metals are not well-represented • (the largest experimental error > 40 kJ/mol) http://www.cmt.anl.gov/OldCHMwebsiteContent/compmat/g3-05.htm http://www.cmt.anl.gov/OldCHMwebsiteContent/compmat/g2geoma.htm http://www.cmt.anl.gov/OldCHMwebsiteContent/compmat/g3-99.htm http://www.begdb.com/

  16. MultilevelMethods

  17. Single-Point • Experience: geometry isnot thatsensitive to the level of theory as energy. • Example:ozone(1O3) a non-trivialcase • Notation: QCISD(T)/6-31G(d)//B3LYP/6-31G(d) Properties//Geometry It is notalwaysa simpleenergycalculation! (NMR) John A. Pople http://cccbdb.nist.gov/

  18. Single-Point Length of a line betweentwopointsdoesnotalwaysgiveyouthesmallestdistanceincomputationalchemistry.

  19. G3MP2B3 Larry A. Curtiss John A. Pople Johann Carl Friedrich Gauss

  20. G3MP2B3modelchemistry Itselements: Geometry and frequencies: B3LYP/6-31G* ΔE(ZPE)=0.96*ZPE (2)Additional higher polarization:ΔE(G3Large)=E(MP2/G3Large))-E(MP2/6-31G(d)) (3) Correction forMP2truncation: ΔE(QCI)=E(QCISD(T)/6-31G*)-E(MP2/6-31G*) (4) Remaining deficiencies:ΔE(HLC)=-Anβ -B(nα -nβ) nα ≥nβ ΔE(SO) ΔE(SO)arethesameasusedin G3 E0 (G3MP2B3)=E(MP2/6-31G*)+ΔE(G3Large)+ΔE(QCI)+E(HLC)+E(ZPE) +E(SO) E0(G3MP2B3)=E(QCISD(T)/6-31G*)+ΔE(G3Large)+E(HLC)+E(ZPE) +E(SO) Fromtable A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys., 1999, 110, 7650-7657.

  21. G3MP2B3model chemistry E E(MP2/6-31G(d)//B3LYP/6-31G(d)) ΔE(G3Large) ΔE(QCI) E(MP2/G3MP2Large//B3LYP/6-31G(d)) ‘Vector sum’ E(QCISD(T)/6-31G(d)//B3LYP/6-31G(d)) G3MP2B3 energy-(ΔE(HLC)+ΔE(ZPE)) QCISD(T) limit 6-31G(d) 6-311+G(3df,2p) An estimation of QCISD(T)/6-311++G(3df,2p) level of theory Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1999,110, 7650.

  22. ΔE(HLC) correction • E.g. OH radical O 1s12s2 2p4valence: 6e- H 1s1valence: 1e- Ms=2 nα= 4 ≥ nβ= 3 ΔE(HLC)=-Anβ -B(nα -nβ) ΔE(HLC)=E(empiric)= -0.010041×3-0.004995×(4-3)=-0.035118 Hartree

  23. ΔE(SO) correctionforatoms Unit conversion!!! It is notincludedinthe G3MP2 energyinthe output file !!! Thiscorrectionneedsto be added manually!!! J. Chem. Phys., 1998, 109, 7764-7776.

  24. Practise T = 298.15 K E(QCISD(T)/6-31G(d)) Ecorr Temperature= 298.150000 Pressure= 1.000000 E(ZPE)= 0.007972 E(Thermal)= 0.010332 E(QCISD(T))= -75.537195 E(Empiric)= -0.035118 DE(MP2)= -0.093259 G3MP2(0 K)= -75.657600 G3MP2 Energy= -75.655240 G3MP2 Enthalpy= -75.654295 G3MP2 Free Energy= -75.674542 ΔE(HLC) ΔE(G3Large) E(G3MP2B3)=Etot(G3MP2B3) + Ecorr T = 298.15 K and P = 1 atm H(G3MP2B3)=Etot(G3MP2B3) + Hcorr G(G3MP2B3)=Etot(G3MP2B3) + Gcorr

  25. MUE fromexperiment 1 kcal/mol (=4.184 kJ/mol) is thechemicalaccuracy

  26. MultilevelMethods Performance MeasuredbyPublications

  27. G2

  28. G3

  29. G3MP2B3

  30. Thankforyourattention!

More Related