390 likes | 537 Views
14. TÖMEGSPEKTROMETRIA. John B. Fenn. Koichi Tanaka. The Nobel Prize in Chemistry 2002 "for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules". 14.1. A tömegspektrometria alapjai. 14.2. A tömegspektrometria műszerei.
E N D
14. TÖMEGSPEKTROMETRIA John B. Fenn Koichi Tanaka The Nobel Prize in Chemistry 2002 "for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules"
14.1. A tömegspektrometria alapjai 14.2. A tömegspektrometria műszerei 14.3. A tömegspektrometria alakalmazása
14.1. A tömegspektrometria alapjai Izolált, ionizált részecskék tömeg-töltés arányuk szerinti elválasztása Angolul: Mass Spectrometry (MS)
Egyszeres fókuszálású készülék: Az ionokat először elektromos térben gyorsítják, majd mágneses térben elválasztják. A részecske tömege m, elektromos töltése e. U feszültséggel gyorsítjuk.
Homogén mágneses térbe kerül. (A mágneses indukció iránya merőleges a belépő töltés mozgásának irányára) Lorentz erő: e [As]: az ion töltése (az elemi töltés egyszerese, kétszerese, stb.)v [m/s]: az ion sebességeB [Tesla = N/Am = Vs/m2]: a mágneses indukció
A mozgás irányára merőleges erő körmozgásra készteti az ionokat (centripetális erő). Jobb-kéz szabály: hüvelykujj az áram irányába a többi kinyújtott ujj a mágneses tér irányába.Tenyerünk így az erő irányába mutat. B: merőleges a papír síkjára
Az ionizáció módszerei a) Elektronütközéses ionizáció (pozitív gyökion) (negatív gyökion) A pozitív gyökionok stabilabbak. A tömegspektrometria csaknem kizárólag pozitív ionok szétválasztásával foglalkozik.
Fragmentáció Az ionok tovább bomlanak párhuzamos és konszekutív reakciókban
b) Kémiai ionizáció:nagy feleslegű reagens gáz (CH4, NH3, izobután). Elsősorban a reagens gázok ionizálódnak,ezek ütköznek a vizsgálandó molekulákkal. Főleg MH+ ionok keletkeznek. Spektrum egyszerűbb.
c) Szekunder ion tömegspektrometria(SIMS, Secondary Ion Mass Spectrometry) Szilárd mintát Ar+ ionokkal vagy O2+ ionokkal bombáznak. A felületről atomok és ionok lépnek ki. A felület vizsgálatára szolgáló módszer.
d) Bombázás gyors atomokkal(FAB, Fast Atomic Bombardment) Nem illékony mintákra alkalmas. A mintát feloldják (pl. glicerinben). Semleges atomokkal (Ar, Xe) bombázzák Biológiai, gyógyszeripari minták vizsgálata
Detektor: elektronsokszorozó Katód az ionok detektálására érzékeny Nincs ablaka (nagy vákuumban van)
Felbontás: M a vizsgálat ion móltömege, M az éppen még felbontott két csúcs közötti tömegszámkülönbség Pl. 500-as felbontás esetén az 1000-es és az 1002-es tömegszámú csúcsot külön jelzi, az 1000-es és az 1001-es tömegszámú csúcs egybeolvad.
14.2. A tömegspektrometria műszerei • Csoportosítás a tömeganalizátor szerint: • Egyszeres fókuszálású tömegspektrométer • Kettős fókuszálású tömegspektrométer • Kvadrupol tömegspektrométer • Repülési idő tömegspektrométer
Spektrum: mágneses tér változtatásával vagy gyorsító feszültség változtatásával Felbontás: 100-tól néhány 1000-ig
b) Kettős fókuszálású tömegspektrométer Az ionok elválasztása két lépésben, elektromos térrel és mágneses térrel Felbontás: néhány tíz ezertől 100 ezerig
c) Kvadrupol tömegspektrométer Négy elektród (párhuzamos fémrudak)Közöttük halad az ionsugár. Két-két szemben lévő elektród mindig azonos potenciálon van. A potenciálnak váltóáramú és egyenáramú komponense is van.
Adott feszültség-amplitúdók esetén egy bizonyos tömegtartományba eső ionok oszcillálnak. Még mielőtt belezuhannának az egyik elektródba, megfordul a polaritás. Így az ionok végigjutnak a rudak közötti üregen és elérik a kilépő rést. Az eltérő m/e-vel rendelkező ionok egyre nagyobb amplitúdóval oszcillálnak, és belezuhannak valamelyik elektródba.
Előnyök: gyors (nem a mágneses teret változtatjuk) m/e lineárisan változik a térerősséggel Felbontás: max 3000
d) Repülési idő tömegspektrométer (TOF: Time Of Flight) Az iongyorsítóban a különböző tömegű (de azonos töltésű) ionok azonos energiára tesznek szert: A nagyobb tömegűek kisebb sebességűek,akisebb tömegűek nagyobb sebességűek lesznek.
Repülési idő tömegspektrométer Felbontás: néhány száztól néhány ezerig 14.5.
14.3. A tömegspektrometria alkalmazása • a) Analitikai alkalmazás • Szerves molekulák szerkezetvizsgálata • Fizikai kémiai alkalmazás
a) Analitikai alkalmazás Móltömegek meghatározása Gázkeverékek kvantitatív analízise Nyomelemzés Izotóp-arány mérés Elemanalízis Gázkromatográfiával kombinált tömegspektrometria (GC-MS)
b) Szerves molekulák szerkezetvizsgálata A csúcsok típusai: Molekulacsúcs Fragmens csúcsok M+A++B Többszörös töltésű csúcsok Metastabil csúcsok (rövid élettartamú ionok)
Tiofén 14.6.
N-bután 14.7.
N-bután 1) molekulacsúcs m/e = 58-nál viszonylag kis intenzitású 2) m/e = 43-nál van a legvalószínűbb csúcs 58-43 = 15, tehát egy metil-csoport hasadt le, C3H7+ ionból származik 3) m/e = 59-nél kis csúcs, 13C illetve 2H természetes jelenléte miatt (szatelit csúcs) 4) m/e = 29 C2H5+ de C4H102+ is. 5) m/e = 25,5 51-es, 2-szeres töltésű ion.
c) Fizikai kémiai felhasználás Ionizációs energia (potenciál) meghatározása Ionizációs potenciál az a minimális energia, amely az ion képződéséhez szükséges. Az ionizáló elektronok energiájának függvényében mérjük az intenzitást.
További fizikai-kémiai alkalmazási területek: - Ionok, gyökök képződéshője - Kötési energiák - Reakciókinetikai vizsgálatok