1 / 25

1. Calculating Simple Interest

1. Calculating Simple Interest. A dollar today is worth more than a dollar tomorrow Because of this cost, money earns interest over time If you are borrowing, you will pay interest If you are lending/investing, you will earn interest Simple Interest

zarek
Download Presentation

1. Calculating Simple Interest

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 1. Calculating Simple Interest • A dollar today is worth more than a dollar tomorrow • Because of this cost, money earns interest over time • If you are borrowing, you will pay interest • If you are lending/investing, you will earn interest • Simple Interest • interest on an investment that is calculated once per period, usually annually • on the amount of the capital alone • interest that is not compounded

  2. 1. Calculating Simple Interest • Principal is the initial amount invested or borrowed (the loan amount or how much you save) • Simple Interest Formula: • P = Principal • r = Annual Interest Rate • t = Number of periods (usually years) the money is being borrowed • Simple Interest = Principal times interest times years • Simple Interest = P(r)(t) • Total Owed = P + P(r)(t)

  3. 1. Calculating Simple Interest • Ex 1: • Mr. Vasu invests $5,000. His annual interest rate is 4.5% and he invests his money for 5 years. What is the total in his account after this time? • P = • r = • t = • Total = P + P(r)(t) $5,000 0.045 5 5000 + 5000(0.045)(5) 5000 + 1125 = $6,125

  4. 1. Calculating Simple Interest • Ex 2: Trayvond saves $10,000 to pay for a car. His earns 6% on his investment and invests his money for 7 years. What is the total in his account after this time? • P = • r = • t = • Total = P + P(r)(t) $10,000 0.06 7 10000 + 10000(0.06)(7) 10000 + 4200 = $14,200

  5. 2. Calculating Compound Interest • Constant Multiplication Factor and Interest Rate • The constant multiplication factor = (1 + r) • r = annual interest rate (as a decimal) • Annual interest rate and growth rate are the same thing • Ex 1: If you earn 6%, what is the constant multiplication factor: (1 + 0.06) = (1.06) • Ex 2: If the CMF is 1.5, what is the growth rate? • 1.5 = 1 + r; r=0.50, which is 50%

  6. 2. Calculating Compound Interest • Ex 3: Mr. Vasu invests $10,000 in an account that earns 6% annual interest that compounds annually. How much will he have in 2 years: Mr. Vasu has $11,236 after two years.

  7. 2. Calculating Compound Interest • Ex 3: Mr. Vasu invests $10,000 in an account that earns 6% annual interest that compounds annually. How much will he have in 2 years: • Ex 4: Mr. Vasu invests $10,000 in an account that earns 6% annual interest that compounds annually. How much will he have in 7 years? 10,000(1.06)7= $15,036.30 Mr. Vasu has $15,036.30 after seven years.

  8. 2. Calculating Compound Interest • Compound Interest Formula • (Exponential Growth Function) • A = P(1 + r)t • A = Future Value or Final/Ending Value • P = Principal/Initial Value and Y-Intercept • r = Annual Interest Rate/Growth Rate • t = Years

  9. 2. Calculating Compound Interest • Ex 5: Aaliyah invests $6,000 and earns 5% per year. • Write an exponential growth equation for how much money Aaliyah has after t years? • A = ? • P = 6,000 • r = 0.05 • t = ? • A = 6000(1.05)t • How much will she have after six years if interest is compounded annually? • t = 6 years • A = 6000(1.05)6 • A = $8,040.57

  10. 2. Calculating Compound Interest • Ex 6: Ganiu invests $24,000 for ten years at 4.5%. • How much does he have in his account after the ten years? • A = ? • P = 24,000 • r = 0.045 • t = 10 • A = 24000(1.045)10 • A = $37,271.27 • Ganiu has $37,271.27 after 10 years. • How much did he earn in interest alone? • $37,271.27 – 24,000 = • Ganiu earned $13,271.27 in interest.

  11. 3. Analyzing Compound Interest Formula • Ex 7: The following function represents how much money Lashawn has in her account after t years: A(t) = 6,500(1.17)t • What is the y-intercept? • The coefficient is 6,500, so the y-intercept is 6,500. • What is the constant multiplication factor? • The base is 1.17, so the CMF is 1.17. • How much money does Lashawn invest at the beginning into her account? • The y-intercept is where t=0, the initial value. So, she started with $6,500. • What is the annual interest rate? • CMF = (1+r) = 1.17, so r = 0.17 or 17% • How much Lashawn have after twelve years? • A(t) = 6,500(1.17)12 = $42,770.44.

  12. 3. Analyzing Compound Interest Formula • Ex 8: The following function represents the number people living the Chinese city of Kunming: C(t) = 50,000(2)t • What is the y-intercept? • Coefficient is 50,000, so the y-intercept is 50,000. • What is the constant multiplication factor? • The base is 2, so the CMF is 2. • How many people were initially in Kunming? • The y-intercept is where t=0, the initial value. So, the initial population was 50,000 people. • What is the annual growth rate in population? • CMF = (1+r) = 2, so r = 1 or 100% growth • How many people in Kunming after 10 years? • C(t) = 50,000(2)10 = 51,200,000 people

  13. 4. Calculating Compound Interest w Periodic Compounding Semiannual Quarterly Monthly Daily • Compound Interest Formula • with Periodic Compounding • A = P(1 + r/n)nt • A = Future Value or Final/Ending Value • : • P = Principal/Initial Value and Y-Intercept • r = Annual Interest Rate/Growth Rate • t = Years • n = Periods per Year (1, 2, 4, 12, 365)

  14. 4. Calculating Compound Interest w Periodic Compounding Semiannual Quarterly Monthly Daily • Ex 9: Henok invests $6,000 and earns 5% per year. How much will he have after six years • A(t) = 6000(1 + .05/n)6n • if interest is compounded annually (n=1)? • A = 6000(1.05)6 • A = $8,040.57 • if interest is compounded semi-annually (n=2)? • A = 6000(1 + 0.05/2)(2●6) • A = 6000(1.025)12 • A = $8,069.33 • if interest is compounded quarterly(n=4)? • A = 6000(1 + 0.05/4)(4●6) • A = 6000(1.0125)24 • A = $8,084.11

  15. 4. Calculating Compound Interest w Periodic Compounding Semiannual Quarterly Monthly Daily • Ex 9: Henok invests $6,000 and earns 5% per year. How much will he have after six years • A(t) = 6000(1 + .05/n)6n • if interest is compounded monthly (n=12)? • A = 6000(1 + 0.05/12)(12*6) • A = $8,094.11 • if interest is compounded daily (n=365)? • A = 6000(1 + 0.05/365)(365●6) • A = $8,098.99 Henok’s investment gets bigger if interest compounds more frequently

  16. 5. Simple vs. Compound Interest Linear vs. Exponential Functions Ex 10: Homer invests $1,000 at 10% for nine years P = 1,000 r = 0.10 t = 9 Simple Interest Compound Interest (annual) Asimple = P + Prt A = 1000 + 1000(0.10)(9) Asimple = $1,900 Acompound = P(1+r)t A = 1000(1.10)9 Acompound = $2,357.95

  17. 6. Finding the Initial Value Of Exponential Growth/Interest • Compound Interest Formula with Periodic Compounding • A = P(1 + r/n)nt • To find theInitial Value, we need to solve for P • We will be given: A, r, n, t

  18. 6. Finding the Initial Value Of Exponential Growth/Interest Ex 1:The future value of an investment at the end of five years is $25,000. What is the initial investment if you earned 10% interest, compounded annually? A = 25,000 P = ? r = 0.10 n = 1 (annually) t = 5 (years) 25000 = P(1 + 0.1/1)(1*5) 25000 = P(1.61051) 25000 = 1.61051P 1.61051 1.61051 $15,523.03 = P This initial value was $15,523.03 Check: 15523.03(1.1)5 = 25,000 Go to five decimal places

  19. 6. Finding the Initial Value Of Exponential Growth/Interest Ex 2:The future value of an investment at the end of seven years is $35,000. What is the initial investment if you earned 5% interest, compounded quarterly? A = 35,000 P = ? r = 0.05 n = 4 (quarterly) t = 7 (years) 35000 = P(1 + 0.05/4)(4*7) 35000 = P(1.41599) 35000 = 1.41599P 1.41599 1.41599 $24,717.69 = P This initial value was $24,717.69 Check: 24717.69(1.0125)28 = 35,000 Go to five decimal places

  20. 6. Finding the Initial Value Of Exponential Growth/Interest Ex 3:You decide you need $50,000 to go to graduate school in five years. You find an investment that pays 12% interest, compounded monthly. How much money will you need to invest today, to go to graduate school in five years ? A = 50,000 P = ? r = 0.12 n = 12 (monthly) t = 5 (years) 50000 = P(1 + 0.12/12)(12*5) 50000 = P(1.81670) 50000 = 1.81670P 1.81670 1.81670 $27,522.48 = P This initial value was $27,522.48 Check: 27522.48(1.01)60 = 50,000 Go to five decimal places

  21. 7. What is Annual Percentage Yield? Comparing APY vs. APR • The Annual Percentage Rate (APR)is the rate of interest earned per year. • This is the rate that we’ve used in all of our problems so far • The Annual Percentage Yield (APY) is the actual annual percent earned when you calculate for compounding • APY ≥ APR • Both are rates per one year

  22. 7. What is Annual Percentage Yield? Comparing APY vs. APR Ex 1: Annual Percentage Rate (APR) is 10% and interest is compounded annually. What is APY? r = APR = 0.10 n = 1 (annually) t = 1 (years) 1 + APY = (1 + r/n)(n*t) 1 + APY = (1 + 0.10/1)(1*1) 1 + APY = 1.10000 -1 -1 APY = 0.10 = 10% If annual compounding APY = APR Go to five decimal places

  23. 7. What is Annual Percentage Yield? Comparing APY vs. APR Ex 2: Annual Percentage Rate (APR) is 10% and interest is compounded quarterly. What is APY? r = APR = 0.10 n = 4 (annually) t = 1 (years) 1 + APY = (1 + r/n)(n*t) 1 + APY = (1 + 0.10/4)(4*1) 1 + APY = 1.10381 -1 -1 APY = 0.10381 = 10.381% 10.38% > 10% APY > APR bcs of compounding Go to five decimal places

  24. 7. What is Annual Percentage Yield? Comparing APY vs. APR Ex 3: Annual Percentage Rate (APR) is 10% and interest is compounded daily. What is APY? r = APR = 0.10 n = 365 (annually) t = 1 (years) 1 + APY = (1 + r/n)(n*t) 1 + APY = (1 + 0.10/365)(365*1) 1 + APY = 1.10516 -1 -1 APY = 0.10516 = 10.516% 10.52% > 10% APY > APR bcs of compounding Round to five decimal places

  25. 7. What is Annual Percentage Yield? Comparing APY vs. APR • Why does it matter? • Loans will advertise APR (even though you pay higher APY because of compounding) • Investments will advertise APY (since it is higher than APR)

More Related