1 / 19

ICFA Seminar

ICFA Seminar. Particle Physics Prospects. ICFA seminar highlights Discussion statements. 5’ Introduction (Eric) 30’ Presentation (Sijbrand & Frank) 4 20’ Statement discussion 5’ AOB 60’ Beer. ICFA Seminar Program. http://dsu.web.cern.ch/dsu/of/icfasource.html.

zazu
Download Presentation

ICFA Seminar

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ICFA Seminar Particle Physics Prospects • ICFA seminar highlights • Discussion statements S. de Jong & F. Linde, 22-November-2002

  2. 5’ Introduction (Eric)30’ Presentation (Sijbrand & Frank)420’ Statement discussion5’ AOB60’ Beer S. de Jong & F. Linde, 22-November-2002

  3. ICFA Seminar Program http://dsu.web.cern.ch/dsu/of/icfasource.html • Opening Talk (E. Witten) • Laboratory Reports • Neutrino Physics • Advanced Accelerator-Based and Reactor-Based Neutrino Sources • Lepton Colliders (added information recent ECFA/DESY e+e linear collider workshop) • Advanced Hadron Colliders • Networking and Instrumentation • Astro-Particle Physics • Global Collaboration • Spin-off and Outreach • Outlook • Closing Talk (S. Perlmutter) S. de Jong & F. Linde, 22-November-2002

  4. e+e linear collider Politics 1/4 • Politics: • ECFA, ACFA, HEPAP & OECD agree e+e linear collider is next logical step in accelerator based particle physics; • All laboratories and nationalities involved agree e+e linear collider to be a “world project” (“Global accelerator/detector concepts”); • Cold TESLA concept is at present the only mature proposal. However, everyone expects three comparable ($$$, L, s) proposals to be available by the end of 2003. • “Physics”: • Everyone says pp and e+e collider should run concurrently. • Reality: • State which offers most $, € or ¥ will become the host! • First beam optimistically before end of LHC running (2015?). S. de Jong & F. Linde, 22-November-2002

  5. e+e linear collider “Standard Model” Physics 2/4 • Electro-weak symmetry breaking • (500-1000 fb1) • Higgs mass: mH  50 MeV • Higgs couplings:  2% • Higgs mass: mH  50 MeV • Higgs couplings:  2% • Higgs potential:  20% • Higgs mass: mH  50 MeV e Z0 Z0 H potential via HHH vertex Z0 gHff via Hff decay MH via Z0/ee recoil mass e+  H tt, bb, cc, gg,  WW, ZZ, , Z H H Standard Model internal consistency (“Giga Z” & standard running) • W-boson: mW  5 MeV • Standard W&Z couplings • Z-boson: sin2w 105 • t-quark mass: mt  100 MeV • Anomalous W&Z-couplings • Higgs mass: mH  50 MeV • Higgs couplings:  2% • Higgs potential:  20% • Higgs spin-parity analysis • Theoretical effort: • 2-loop calculations e.g. r •  (e+e annihilation @ low s) • many new MC generators; • e.g. “automatic” MC packages S. de Jong & F. Linde, 22-November-2002

  6. e+e linear collider “New” Physics 3/4 Supersymmetry Extra-dimensions • Sparticles: • Masses: threshold scans • Couplings: cross-sections LC CLIC  e  f e+ e G G e+ f note E-scale! • Higgs sector: h0, H0, A0, H • Unravel the ambiguities left • behind by the LHC! S. de Jong & F. Linde, 22-November-2002

  7. e+e linear collider Detector R&D 4/4 Calorimetry Tracking • Three techniques: • huge TPC • silicon strip & pixel detectors • Sampling technique; active medium: • silicon pads or scintillator ** thinning ** • High segmentation // &  directions: • becomes “tracking” like! • good for particle ID (  0) • The TPC appears to be the hottest; competing in resolution with the silicon! • perforated foils for gas amplification • (“GEM” or “Micromega”) • silicon pixel readout? • resolution diffusion limited S. de Jong & F. Linde, 22-November-2002

  8. 1 • How? • Physics studies & detector R&D? • LoopVerein? • When? • Before Amsterdam ECFA/DESY workshop? “NIKHEF joins the global e+e linear collider endeavour” (Collary: NIKHEF helps to convince CERN to do so as well!) S. de Jong & F. Linde, 22-November-2002

  9. Neutrino status 1/4 Atmospheric m2  3103 eV2 23  45o 23 Solar m2  5105 eV2 12  30o • 13 is small (<15o) • CP-violating phase ? • sign of m2 ? • Dirac  Majorana • Absolute -mass values? 12 13 • Status: • Three -species (LEP: 2.981  0.008; 4He/1H: 3.3  0.2 or so) • -mass limits (tritium -decay: < 2.8 eV; astrophysics: < 1 eV) • Solar -oscillations (Homestake, Gallium, (Super)Kamiokande, SNO) • Atmospheric -oscillations (IMB, Macro, (Super)Kamiokande, Sudan) • LSND anomaly (wait for MiniBoone’s result; ignore it for the moment) S. de Jong & F. Linde, 22-November-2002

  10. Neutrino oscillations 2/4 1.0 P()=1 - sin2 2 sin2(Lm2/(4E)) P() P(x)=sin2 2 sin2(Lm2/(4E)) probability P(x) L 0.0 • The crucial issues • Nature: ij & m2 • Neutrino source • Neutrino energy • Neutrino flight distance • Neutrino detector • Event count rate ij E E [GeV] Loscillation = [km] 1.3m2 [eV2] S. de Jong & F. Linde, 22-November-2002

  11. 3/4 -beam prospectives m2 m2 Conventional -beam near experiment near experiment E = 2(E pcos) far experiment far experiment target target decay tunnel decay tunnel horns horns E Off-axis -beam (variable energy to optimise Loscillation!) experiment experiment experiment experiment Fission reactor: e-beams experiment -decay: e,e-beams 6He  6Li + ee 18Ne  18F + e+e  storage ring -factory: e,e,,-beams S. de Jong & F. Linde, 22-November-2002

  12. 4/4 -beam physics/experiments Loscillation 250 km e-disappearance -appearance? e E  5 MeV baseline  200 km Reactor: K2K: 1.3 GeV Loscillation 800E km  appearance (e appearance) -disappearance e or e E  500 MeV baseline  ? km NuMi: tuneable CNGS: 17 GeV Loscillation is large -appearance e-disappearance?  or  E  0.5 – 20 GeV baseline  1000 km -beam: /-beam: physics: sin2213? Loscillation: large (20,000 km) rare decays wrong-sign -appearance (disappearance) asymmetries  CP-violation? e, e ,  or  polarisation E  20-50 GeV baseline  3000 km huge statistics -factory: technology: -cooling? Energy! ??? S. de Jong & F. Linde, 22-November-2002

  13. 2 • First: • Establish a joint experiment-theory study group • Capita for our (astro)particle physics master • Next? • Join MINOS? Join K2K? Do not join CNGS! • Investigate -cooling experiment (MICE)? • -factory   collider? “NIKHEF makes a serious study of the physics potential of (high intensity) -beams” S. de Jong & F. Linde, 22-November-2002

  14. 1/3 Astroparticle physics -astronomy: AMANDA Baikal ANTARES/NEMO NESTOR 1 Southern 1 Northern Hemisphere detector HENAP The universe: 65% dark energy (but Higgs too much!) 30% dark matter (astronomical: white/brown dwarfs, neutron stars/black holes, gas clouds; particles:n, axions, WIMPS, c,…) 5% visible baryonic matter S. de Jong & F. Linde, 22-November-2002

  15. Astroparticle physics 2/3 WIMP High Energy Gamma ray: DAMA, CMDS, EDELWEISS Boulby mine: NAIAD, ZEPLIN, DRIFT Axion search using LHC magnet GLAST S. de Jong & F. Linde, 22-November-2002

  16. 3/3 Astroparticle physics Extensive Air Shower Arrays: High energy neutrinos High energy gamma rays … Ground based: AGASA, …, Pierre-Auger Satellite based: EUSO OWL Radio detectors: RICE, ANITA, SALSA, GLUE, LOFAR S. de Jong & F. Linde, 22-November-2002

  17. 3 • How? • Joining prospective experiments covering a broad spectrum to maximize our discovery potential • (Pierre-Auger, HyperKamiokande, Gravitational wave antenna’s, …) • Which level? • Manpower wise (WP/V): up to 30% • Investment wise: substantially less “NIKHEF increases its astro-particle physics effort” S. de Jong & F. Linde, 22-November-2002

  18. 4 • How? • Increased flexibility vis-à-vis individual initiatives • Broader experimental program • Substantially less “mass” production • Increased collaboration with theory group • Increase software framework effort? “NIKHEF improves balance between: Hardware  Software  Physics experiment contributions” S. de Jong & F. Linde, 22-November-2002

  19. The End S. de Jong & F. Linde, 22-November-2002

More Related