1 / 18

Spatial Econometric Analysis Using GAUSS

Spatial Econometric Analysis Using GAUSS. 3 Kuan-Pin Lin Portland State University. Spatial Weights Matrix. Anselin (1988) [ anselin.1 ] Ertur and Kosh (2007) [ ek.1 ] China 30 Provinces [ china.1 , china.2 ] Homework U.S. 48 Lower States [ us48_w.txt ]

zelia
Download Presentation

Spatial Econometric Analysis Using GAUSS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spatial Econometric AnalysisUsing GAUSS 3 Kuan-Pin LinPortland State University

  2. Spatial Weights Matrix • Anselin (1988) [anselin.1] • Ertur and Kosh (2007) [ek.1] • China 30 Provinces [china.1, china.2] • Homework • U.S. 48 Lower States [us48_w.txt] • U.S. 3109 Counties [us3109_w.zip][us3109_wlist.txt]

  3. Spatial Contiguity Weights MatrixAnselin (1988): W1, W2, W3

  4. Spatial Contiguity Weights MatrixChina, 30 Provinces and Cities: W1, W2, W3

  5. Distance-Based Spatial WeightsErtur and Kosh (2007) • Geographical Location (x,y) • Longitude (x) • Latitude (y) • Great Circle Distance • d=gcd(x,y) • (x,y) is in degree decimal units • Distance-Based Spatial Weights Matrix • Using Kernel Weight Function

  6. Distance-Based Spatial WeightsErtur and Kosh (2007) • Kernel Weight Function • Parzen Kernel • Bartlett Kernel (Tricubic Kernel) • Turkey-Hanning Kernel • Guassian or Exponenetial Kernel

  7. Kernel Weights Spatial MatrixAn Example • Negative Exponential Distance • Negative Gaussian Distance

  8. Gaussian Distance Weights MatrixErtur and Kosh (2007)

  9. Spatial HAC Estimator • The Classical Model

  10. Spatial HAC EstimatorGeneral Heteroscedasticity • Huber-White Estimator

  11. Spatial HAC EstimatorGeneral Heteroscedasticity and Autocorrelation • First Law of Geography • Kelejian and Prucha (2007)

  12. Time Series HAC EstimatorGeneral Heteroscedasticity and Autocorrelation • Newey-West Estimator

  13. Crime EquationAnselin (1988) [anselin.2] • Basic Model(Crime Rate) = a + b (Family Income) + g (Housing Value) + e • Spatial HAC Estimator

  14. GDP Output ProductionChina 2006 [china.3] • Cobb-Douglass Production Function ln(GDP) = a + b ln(L) + g ln(K) + e • Spatial HAC Estimator

  15. Spatial ExogeneityLagged Explanatory Variables • Spatial Exogenous Model

  16. GDP Output ProductionChina 2006 [china.4] • Cobb-Douglass Production Function ln(GDP) = a + b ln(L) + g ln(K) + bwW ln(L) + gw W ln(K) + e

  17. Spatial EndogeneityLagged Dependent Variable • Spatial Lag Model

  18. References • T. Conley, 1999 “GMM estimation with cross sectional dependence,” Journal of Econometrics 92, 1999, 1–45. • H. Kelejian and I.R. Prucha, “HAC Estimation in a Spatial Framework,” Journal of Econometrics 140, 2007, 131-154. • W. Newey, and K. West, 1987, “A simple, positive semi-definite, heteroskedastic and autocorrelated consistent covariance matrix,” Econometrica, 55, 1987, 703–708. • H. White, “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50, 1982, 1-26.

More Related