1 / 26

Ökotehnoloogia Hoone energiavajadus, passiivsed kütte- jahutustehnoloogiad

Ökotehnoloogia Hoone energiavajadus, passiivsed kütte- jahutustehnoloogiad. Tõnu Mauring tonu.mauring.001@ut.ee. Süsteemi piirid. Energiaturg. Elektri ja sooja tootmine. Elekter. Ressursi ammutamine. Energia allikas. Küte. Soe vesi. COP. . Netovajadus. Energia vajadus.

zena
Download Presentation

Ökotehnoloogia Hoone energiavajadus, passiivsed kütte- jahutustehnoloogiad

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ÖkotehnoloogiaHoone energiavajadus, passiivsed kütte- jahutustehnoloogiad Tõnu Mauring tonu.mauring.001@ut.ee

  2. Süsteemi piirid Energiaturg Elektri ja sooja tootmine Elekter Ressursi ammutamine Energia allikas Küte Soe vesi COP  Netovajadus Energiavajadus Lõppenergia (= ostetav energia) Primaarenergia (summaarne energiavajadus) Allikas: Erlandsson 2005

  3. Module I Version 1.0 “About SONNENKRAFT”

  4. Hoonete energiavajadus 10% 10% 15% 15% kWh/(m2 a) 19% 25% 19% 80% 25% 70% 62% 33% 33% 33% 50% T.Mauring

  5. “Through intelligent construction and • design” • ~- 90 % 160 kWh m²a Energie effizienz 14 kWh/m²a

  6. Passiivmaja Darmstadt Kranichstein / PHPP mittekasutatavpäikeseosa lõuna- aken lõuna- aken bilanss põhja- aken põhi Energiavoog kWh/(m2 a) katus sise-misedallikad võrdluseks: välis-sein mõõdetudväärtus küte pinnas vent. Sisend Kaod T.Mauring

  7. design of a energy system • kui süsteem on kirjeldatud n parameetriga • ja igaühel neist on 3 sõltumatut olekut • siis kombinatsioonide arv on 3n • probleem hoonete puhul: n on suur • nt kohaloleku profiil, ventilatsioonihulk, soojustus, mass, klaasi tüüp… • isegi suhteliselt väike arv parameetreid annab väga suure arvu kombinatsioone: • n = 10 võrdub näiteks 59 000! • lühidalt, energiasüsteemid on keerukad

  8. b) CSDE - computer-supported design environment … mathematical model, to represent each possible energy flowpath, … to emulate the reality • tool-box approach • …to reduce the complexity • … lessen the computational load • (“handbook”) (J A Clarke 2004)

  9. resolution of the model – that is the number of nodes – is the function of analysis objectives building energy flowpaths (J A Clarke 2004)

  10. tool-box approach, “handbook” klaaspindade orienteeritus ilmakaarte suhtes, mõju energiavajadusele (Oberländer)

  11. tool-box approach, “handbook” päikese mõjuta koos päikese mõjuga akende võrdlus arvestades orienteeritust ilmakaarte suhtes (Oberländer)

  12. tool-box approach, “handbook” akna suuruse mõju U-arvule (Oberländer)

  13. Building orientation and overshadowing analysis • 2D / 3D static or animated visualization of shadows and daily shadow ranges on selected surfaces. • Numerical overshadowing analysis on selected windows or surfaces for specified time-scale. • Visualization of 3D daily and annual sun-paths and seasonal variability of overshadowing. • Generation of sun-path diagrams for selected viewpoints.

  14. Solar access analysis • Cumulative insolation analysis to visualize distribution and availability of solar radiation over an entire building surface. • Numerical calculation of incident solar radiation levels on selected objects or surfaces on selected timescale. • Based on detailed hourly weather datasets

  15. Dynamic building performance simulation Energy efficient building core laboratory Institute of Technology, University of Tartu http://www.tuit.ut.ee/171975

  16. Hourly data Brightest sunny day

  17. Hourly data Most overcast day

  18. Solar shading design • Optimal dimensioning of solar shading devices. • Numerical calculation of solar radiation reduction from overhangs, louvers, blinds and sidefins. • Numerical calculation and 2D/3D visualization of overshadowing from solar shading devices.

  19. Solar thermal simulations Daily maximum collector temperature [ °C] Solar fraction total [%] Energy efficient building core laboratory Institute of Technology, University of Tartu http://www.tuit.ut.ee/171975

  20. Windows: example *Specification of materials *Manufacturer´s drawing *Distribution of temperatures in window

  21. Distribution of temperatures and linear thermal transmittance (ψ) − W/(m*K)

  22. www.tuit.ut.ee/eetl T. Mauring

  23. Daylighting calculations and visualizations • Calculation and visualization of daylight factors and worst-case daylight levels on selected surfaces (Geometric split-flux method). • Numerical calculation of daylight factors and worst-case daylight levels on selected surfaces (Radiosity-based diffuse reflection method), photorealistic visualization of 3D scenes and numerical data overlay. • Numerical comparison of alternative design strategies.

  24. EnergyPlus simulation Max temperature 36.41°C 20 °C line

More Related