1 / 76

Metabolisme Mikrobia

Metabolisme Mikrobia. Metabolisme Mikrobia Katabolisme & Energi Penghasilan PMF Penghasilan ATP Biooksidasi Respirasi (Aerobik) Respirasi Anaerobik Fermentasi Fotoautotrofi Fotosisntesis (oksigenik & anoksigenik) Reaksi cahaya Reaksi gelap (fiksasi CO2) Anabolisme: Biosistesis

Download Presentation

Metabolisme Mikrobia

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Metabolisme Mikrobia Metabolisme Mikrobia Katabolisme & Energi Penghasilan PMF Penghasilan ATP Biooksidasi Respirasi (Aerobik) Respirasi Anaerobik Fermentasi Fotoautotrofi Fotosisntesis (oksigenik & anoksigenik) Reaksi cahaya Reaksi gelap (fiksasi CO2) Anabolisme: Biosistesis Biosisntesis karbohidrat Biosisntesis Lipid Biosisntesis Protein Biosistesis asam nukleat

  2. 1.2. Metabolisme mikrobia • Metabolisme: • Katabolisme : pemecahan  energi • Anabolisme : sintesis ← energi • Metabolisme selular utama: • Glikolisis • Siklus Krebs • Rantai Respirasi

  3. Mekanisme dasar Metabolisme & Penghasilan Energi • Energi: kemampuan melakukan kerja • Sumber energi: cahaya matahari & bahan org/anorg • Bentuk energi yang dipakai: ATP • Jasad hidup tunduk terhadap Hukum Termodinamika • Aliran Elektron dari Rekduktan ke Oksidan menghasilkan energi • Enzim: katalisator protein yang membuat sistem kehidupan berjalan dengan cara memacu kecepatan reaksi pada suhu rendah. • Enzim tidak mengubag “Keq” tetapi menurnkan energi aktivasi  mempercepat tercapainya keadaanequilibrium

  4. Energi Bebas & Reaksi Biokimiawi • Reaksi : A + B C + D • Keq = (C) (D)/(A) (B) • Keadaan Standard: (A); (B); (C) ; (D)  1M ; pH = 7; T = 25°C = (298°K) • Energi bebas Standard: • G°’= - 2,3RT log Keq. • Keadaan equilibrium: konsentrasi (A), (B), (C) dan (D) sudah tetap ! • G = G°’ + 2,3RT log K • = -2,3 RT logKeq + 2,3RT log K • eg. ATP  ADP + Pi • G°’ = -7300 cal/mol

  5. Energi bebas Reaksi Redoks • G = -nF. E n = 2 (sistem hayati) F = 23062 cal/V.mol (Konst. Faraday) eg. NADH2  O2 (E = 1,14 Volt) G = 52.000 cal/mol  4,3 ATP Fakta: NADH2 = 3 ATP Efisiensi = 75%

  6. 1.3. Penghasilan PMF (Proton Motive Force) • Pembentukan gradien proton/pH di antara dua sisi membran: • Membran sel bakteri, arkhaea • Membran dalam mitokondria • Membran tilakoid kloroplas

  7. Generation of PMF

  8. 1.4. Penghasilan energi: ATP • Bentuk energi yang digunakan jasad hidup (ATP) • Pembentukan ATP ada 3 macam: • Fosforilasi tingkat substrat • Fosforilasi oksidatif – khemiosmosis • Fosforilasi fotosintetik

  9. Molekul ATP

  10. ATP

  11. Penghasilan energi : Biooksidasi

  12. A model : redox reaction... • Fe 2+ Fe3+ + e • Fe 2+ teroksidasi menjadi Fe3+ karena kehilangan elektron • Fe3+ tereduksi menjadiFe 2+ dengan menerima elektron

  13. Koenzim: NAD & FAD • NAD: Nicotinamide Adenine Dinucleotide (NAD+ NADH2) • NADP: Nicotinamide Adenine Dinucleotide Phosphate (NADP+ NADPH2) • FAD: Flavin Adenine Dinucleotide (FAD+  FADH2)

  14. FAD+ FADH2

  15. FAD+ FADH2

  16. (NAD+ NADH2)

  17. Penulisan Singkat

  18. NADP

  19. NADP

  20. Biooksidasi: 1. Respirasi aerobik  O2 (oksigen) 2. Respirasi anaerobik  anorganik 3. Fermentasi  organik 1. Respirasi Aerobik: 1.1. Glycolysis 1.2.Tricarboxylic Acid cycle (Krebs Cycle) 1.3. Oxidative phosphorylation

  21. Reaksi biooksidasi-reduksi Laktat + NAD+  Piruvat + NADH2 Bio-katalisator : Lactate Dehydrogenase

  22. Energetics and carbon flow in (a) aerobic respiration, (b) anaerobic respiration, (c) chemolithotrophic metabolism, and (d) phototrophic; metabolism

  23. 1. Respirasi aerobik

  24. Embden-Meyerhof pathway Glycolysis: A common biochemical pathway for the fermentation of glucose is glycolysis, also named the Embden-Meyerhof pathway for its major discoverers. Can be divided into three major stages.

  25. Stages I and II: Preparatory and Redox Reactions Stage I : A series of preparatory rearrangements: reactions that do not involve oxidation-reduction and do not release energy but that lead to the production from glucose of two molecules of the key intermediate, glyceraldehyde 3-phosphate. Stage II: Oxidation-reduction occurs, energy is conserved in the form of ATP, and two molecules of pyruvate are formed.

  26. Stage III: Production of Fermentation Products Stage III: A second oxidation-reduction reaction occurs and fermentation products (for example, ethanol and CO2, or lactic acid) are formed.

  27. 1.1.Glikolisis

  28. Fruktosa-1,6-bi- Phosphate

  29. Perubahan Piruvat Asetil-CoA Pyruvate + Coenzyme A + NAD+  Acetyl-CoA + CO2 + NADH2 Coenzyme A

  30. 1.2.Siklus Krebs

  31. 1.2. Siklus Krebs

  32. 1.2.Siklus Krebs

  33. 1.3.Fosforilasi Oksidatif (Rantai Respirasi) Akseptor elektron terakhir: O2

  34. Cytochrome

  35. Fosforilasi oksidatif

  36. Generation of PMF: teori khemiosmotik

  37. Penghasilan ATP: Respirasi Aerobik Glikolisis (8 ATP)  Perubahan Piruvat  Asetil-CoA (6 ATP)  Siklus Krebs (24 ATP)  Fosforilasi oksidatif  38 ATP

  38. Penghasilan ATP • Glikolisis: • Penghasilan ATP: • 1,3 bifosfogliserat  3 –fosfoliserat : 2 ATP • PEP  Piruvat : 2 ATP -------------------------------------------------------------- • Subtotal 4 ATP -------------------------------------------------------------- • Pemakaian ATP: • Glukosa  Glukosa -6-P : 1 ATP • Fruktosa-6-P  Fruktosa-1,6-bi-P : 1 ATP -------------------------------------------------------------- • Sub-total 2 ATP --------------------------------------------------------------- • Netto penghasilan 2 ATP --------------------------------------------------------------- • Penghasilan NADH2 • Gliseraldehid-3-P  1,3-bi-P-Gliserat: 2 NADH 

  39. Piruvat  Asetil-CoA • Piruvat  Asetil-CoA : 2 NADH2 Piruvat + Co-A + NAD+  Aseti-CoA + CO2 + NADH2

  40. Siklus Krebs • Isositrat  α-Ketoglutarat : 2 NADH2 • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 • Suksinil-CoA  Suksinat : 2 ATP • Suksinat  Fumarat : 2 FADH2 • Malat  Oksaloasetat : 2 NADH2 • Netto: • 6 NADH2 • 2 FADH2 • 2 ATP

  41. Fosforilasi Oksidatif • 1 NADH2 3 ATP • 1 FADH2  2 ATP • Glikolisis : • 2 NADH2  2 x 3 = 6 ATP • Piruvat  Asetil-CoA: • 2 NADH2  2 x 3 = 6 ATP • Siklus Krebs: • Isositrat  α-Ketoglutarat : 2 NADH2 = 6 ATP • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 = 6 ATP • Suksinat  Fumarat : 2 FADH2 = 4 ATP • Malat  Oksaloasetat : 2 NADH2 = 6 ATP -------------------------------------------------------------------- • Sub-total = 22 ATP --------------------------------------------------------------------- • Total 34 ATP

  42. Total Penghasilan ATP • Glikolisis : • 2 NADH2  2 x 3 = 6 ATP (Fosforilasi oksidatif) • 2 ATP = 2 ATP (Fosforilasi tkt substrat) ---------------------------------------------------------------------------------------------------------- • Sub-total = 8 ATP ---------------------------------------------------------------------------------------------------------- • Piruvat  Asetil-CoA: • 2 NADH2  2 x 3 = 6 ATP (Fosforilasi oksidatif) ------------------------------------------------------------------------------------------------------------ • Siklus Krebs: • Isositrat  α-Ketoglutarat : 2 NADH2 = 6 ATP (Fosforilasi oksidatif) • α-Ketoglutarat  Suksinil-CoA : 2 NADH2 = 6 ATP (Fosforilasi oksidatif) • Suksinat  Fumarat : 2 FADH2 = 4 ATP (Fosforilasi oksidatif) • Malat  Oksaloasetat : 2 NADH2 = 6 ATP (Fosforilasi oksidatif) • Suksinil-CoA  Suksinat : 2 ATP = 2 ATP (Fosforilasi tkt substrat) ------------------------------------------------------------------------------------------------------------ • Sub-total = 24 ATP ------------------------------------------------------------------------------------------------------------ • Total 38 ATP ------------------------------------------------------------------------------------------------------------ • Bakteria & Archaea : 38 ATP • Mikrobia eukaryotik: 36 ATP (2 ATP digunakan untuk transfer 2 NADH2 dari sitoplasma ke dalam mitokondria)

  43. Total energi Respirasi Aerobik Glikolisis : 2 NADH2 = 6 ATP 2 ATP = 2 ATP Piruvat  Acetyl-CoA 2 NADH2 = 6 ATP Siklus Krebs 6 NADH2 = 18 ATP 2 FADH2 = 4 ATP 2 ATP = 2 ATP -------------------------------------------------------------- Total = 38 ATP ---------------------------------------------------------------

  44. Respirasi Anaerobik • Reduksi Nitrat  Nitrit NH3  N2 (Closteridium sp.) • Reduksi Sulfat  H2S (Desulforomonas sp.) • Redksi CO2  CH4 (Methanococcus sp. ; Archaea)

  45. 2. Respirasi Anaerobik: Reduksi Nitrat Reduksi Nitrat: NO3 + e + H+ NO2 + H2O

More Related