1 / 44

Astroparticle physics 4. Astroparticles: rulers of the Universe? (or almost...)

Astroparticle physics 4. Astroparticles: rulers of the Universe? (or almost...). Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla, Puebla, México alberto@inaoep.mx Xalapa, 10 August 2004. Planets. Stars: nuclear burning & degenerate corpses.

zeno
Download Presentation

Astroparticle physics 4. Astroparticles: rulers of the Universe? (or almost...)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Astroparticle physics4. Astroparticles: rulers of the Universe? (or almost...) Alberto Carramiñana Instituto Nacional de Astrofísica, Óptica y Electrónica Tonantzintla, Puebla, México alberto@inaoep.mx Xalapa, 10 August 2004

  2. Planets. Stars: nuclear burning & degenerate corpses. Gas, dust (magnetic fields (cosmic-rays)). Galaxies: normal, active. Cosmological background(s). Protons, neutrons  baryons. Electrons, muons  leptons. Neutrinos. Mesons  hadrons  quarks. The composition of the Universe Early Universe / Cosmic-rays / astrophysical neutrinos / non baryonic dark matter / dark energy

  3. Oort’s limit • Statistical study of motion of stars in the Solar neighborhood: first evidence of “missing mass”.

  4. Dark Galactic halo • Light: • Mass: • inside solar circle • halo • extended halo Clemens (1985) 70% to 90% of the mass of the Milky Way is in the dark halo

  5. MACHOs • MAssive Compact Halo Objects: • white or red dwarfes, neutron stars, black holes... • Searched (and found!)through microlensing events (Alcock et al. 1993) but • Statistics: too few MACHOs for the Galactic halo. • HST: red dwarfes < 6% of halo mass. • TeV detections of z0.03 AGN  bounds on IR background  thermal emission from MACHOs

  6. Galactic rotation curves • They become flat  rigid rotation • M/L  1 consistently

  7. M87 X-ray halo • M87: giant elliptical. Brightest Virgo galaxy • X-ray emission extends up to 300 kpc • thermal fre-free emission • M(300 kpc)  31013 M • M/L  750

  8. Local group M31 & Milky Way M/L  50 to 70 Magellanic stream M/L  80 Groups of galaxies M/L  400h Clusters of galaxies Coma cluster   977 km/s  M(3 kpc)  3.31015 M,M/L  660 (Zwicky 1933) X-ray intracluster  M  31014 M (baryonic) cd galaxies 1013 to 1014 M,M/L 750 Local supercluster M  81014 Mh-1, M/L  400h Dynamics of groups and clusters

  9. PSC-z: 15,000 galaxies from IRAS all-sky survey 2dF – 6dF: wide field spectrospic survey 2Mass: IR photometry of 30 million objects SDSS: photometric (100 million) and spectroscopic (> 1 m) HDF North & South: deep HST exposures on narrow field UDF GOODS: common HST, CXO, Spitzer fields ELAIS: from ISO Surveys of Large Scale structure of the Universe

  10. PSC-z • Reshift survey for 15,000 galaxies from IRAS point source catalogue Saunders et al. 2000

  11. 2dF Galaxy Survey • AAO + Cambridge + Durham + Edinburgh • 220,000 redshifts • Power spectrum of galaxy clustering up to 300 h-1 Mpc (Percival et al. 2001, +....) http://www.mso.anu.edu.au/2dFGS/

  12. 6dFGs • First Data release March 2004: 52,000 redshifts (of 150,000) http://www.mso.edu.au/6DFGs/

  13. Sloan Digital Sky Survey • Spectrophotometric survey of ¼ of all sky • Photometry for 100 million objects • Spectra for > 1 million objects • With a 2.5 m robotic survey telescope. • Data releases: • EDR: 14 million / 83,000 (Stoughton et al. 2002) • DR1: 53 million / 186,000 (Abazajian et al. 2003) • DR2: 88 million / 367,000 (Abazajian et al. 2004)

  14. SDSS power spectrum

  15. Large Scale Structure simulations • CMB = Initial conditions • Work better from CDM and 0 lss_nbody & nbody_sim movies by the Virgo Consortium 0=1, CDM M=0.3, =0 M=0.3, =0.7 Colles (1998)

  16. Cosmic Microwave Background Bennett et al. 2003

  17. Local to LSS to CMB

  18. Distant supernovae searches • Expanding Universe • Seeking for curvature: deceleration parameter

  19. High Redshift Supernova • Seeking deceleration  acceleration!

  20. Cosmology standard model

  21. CMB Bennett et al. 2003

  22. Cmbgg OmOl CMB Slides from Max Tegmark website

  23. Cmbgg OmOl CMB + LSS

  24. How much dark matter is there? Cmbgg OmOl

  25. How much dark matter is there? Cmbgg OmOl

  26. How much dark matter is there? Cmbgg OmOl CMB

  27. How much dark matter is there? . Cmbgg OmOl CMB + LSS

  28. Hubble constant and total matter density Cmbgg OmOl

  29. Hubble constant and total matter density Cmbgg OmOl CMB

  30. Hubble constant and total matter density . Cmbgg OmOl CMB + LSS

  31. Neutrino fraction Cmbgg OmOl

  32. Neutrino fraction Cmbgg OmOl CMB

  33. Neutrino fraction . Cmbgg OmOl CMB + LSS

  34. How much dark energy is there? Cmbgg OmOl closed CMB flat + open LSS

  35. Nature of the dark energy Cmbgg OmOl CMB + LSS

  36. How flat is the Universe? Cmbgg OmOl CMB + LSS

  37. How old is the Universe? Cmbgg OmOl CMB + LSS

  38. Cmbgg OmOl CMB + LSS

  39. Dark matter particles • Generate and collapse under gravity • Very weak EM coupling (WIMPs). • Categories • Hot (relativistic) VS cold (non relativistic) • Thermal relics VS non relics For a thermal relic WIMP • (1) known; (2) well motivated; (3) speculative Goldoni, astro-ph/0403064

  40. 1. known: neutrinos: thermal relics too hot; CMB + LSS ruled out. 2.1 neutralinos Lighest super-sym particle of MSSM Superposition of neutral higgsinos and gauginos  weakly interactive and massive Thermal coupled relic Mass range: 40 GeV  4 TeV (WMAP) Dark matter particles

  41. 2.2 axions Non thermal relics: produced by cosmic strings or vacuum alignment Photon coupling? “Useful range”: eV to meV Experimentally bounded: about to be found or to be ruled out 3. speculative self interacting dark matter particles: to solve cusp and satellite problems Almost ruled out WIMPZILLAs mass  1013 GeV Dark matter particles Goldoni, astro-ph/0403064

  42. The cosmic-ray connection!? • WIMPZILLAs: produced at the end of inflation: • Stable • mean-life  age of Universe: decay beyond GZK limit

  43. These presentations Available (soon!) as http://www.inaoep.mx/alberto/cursos/ap2004_1a.ppt http://www.inaoep.mx/alberto/cursos/ap2004_1b.ppt http://www.inaoep.mx/alberto/cursos/ap2004_2.ppt http://www.inaoep.mx/alberto/cursos/ap2004_3.ppt http://www.inaoep.mx/alberto/cursos/ap2004_4.ppt alberto@inaoep.mx

More Related