60 likes | 200 Views
Bakalaureusetöödest 11.04.2012. Juri Babkin. Saatja-vastuvõtja tüüpi Foucault’ kardiograafi vastuvõtuploki ehitamine Title of the work: Design of the Derector block / Transmitter Block of the Transmitter-Receiver Type Foucault Cardiograph. Sisukord 1. Valdkonna ülevaade
E N D
Juri Babkin • Saatja-vastuvõtja tüüpi Foucault’ kardiograafi vastuvõtuploki ehitamine • Title of the work: • Design of • the Derector block / Transmitter Block of the Transmitter-Receiver Type Foucault Cardiograph
Sisukord • 1.Valdkonna ülevaade • 1.1 Uurimismeetodid inimese südame tegevuse jälgimiseks: millised on praegu kasutusel • 1.2 Pöörisvoolude uurimise ja kasutamise ajalugu • 1.3 Kirjanduse ülevaade • 1.3.1 Kokkuvõtte • 1.4 Saatja-vastuvõtja tüüpi Foucault’ kardiograafi ehitamine: erinevused ja eelised • 1.5 Töö eesmark ja sellest tulenevad ülesanded • 2. Meetodid ja materjalid • 3. Tehtud töö kirjeldus • 4. Tulemused • 5. Arutelu • Kokkuvõte • Summary • Kasutatud kirjandus • Lisad
Meetodid ja materjalid • Tänapäevase bioelektrilise impedantsi mõõtja vajalikud omadused ja uued võimalused realiseerimiseks • Elektroonikaskeemide funktsionaalse simulatsiooni vahendid LT Spice näitel • Nõrkade analoogsignaalide töötlemise riistvarast <(Gilberti rakk, voolupeegel, võimendi, induktiivpool jms.), kuidas nad töötavad.> • < Elektroonikakomponentide valiku põhimõtted ja valik käesoleval juhul> • Lühiülevaade mikrokontrolleri XXXXX võimalustest (koodi näited?) • Montaažiplaatide trasseerimise probleem ja vahendid selle lahendamiseks
Meetodid ja materjalidTehtud töö Plaan: • Foucault’ kardiograafi ehitus (üldskeem kirjeldusega) • Vastuvõtuploki ehitus skeemiga, skeemiosade seletused, kuidas nad töötavad. • Valitud komponendid ja paigutus plaadil • Mikrokontrolleri lahendused (koodi näited?)
Auto-Tuned Induction Coil Conductivity Sensor for In-Vivo Human Tissue Measurements J. Heller and J. R. Feldkamp Kimberly-Clark Corporation, Corporate Research and Engineering 2100 Winchester Road, Neenah, WI 54956, U.S.A Auto-tuned induction coil technology, based upon phase-locked loop circuitry (PLL), was developed and shown to be an effective tool for in-vivo measurement of elect-rical conductivity of human tissues. Because electrical contact is not required, se-veral disadvantages of the electrode method for conductivity determination are avoi-ded, such as electrode polarization and variable conductivity associated with the stratum corneum of the epidermis. Fixed frequency excitation is supplied to a paral-lel tuned RLC circuit, or “sensor”, while bias applied to a varactor diode is automa-tically adjusted via PLL circuitry to maintain the RLC sensor at resonance. Since re-sonant impedance of a coil positioned near a conductive object is known to be fre-quency dependent, such an arrangement permits precise calibration of the sensor against a set of standard Potassium Chloride solutions. In our experiments, a two-layer spiral coil is used with upper and lower spiral arms staggered so as to reduce inter-winding coil capacitance. Preliminary in-vivo testing was done on the forearms of a single male subject as a prelude to more extensive use in a clinical setting. In that instance, electrical conductivity at the proximal volar forearm location was shown to depend on forearm elevation. Clinical studies using our prototype, as well as further consideration of the “elevation effect”, arediscussed in a companion paper. Keywords: Induction coil, electrical conductivity, phase-locked-loop, human tissues, impedance, resonance