570 likes | 883 Views
Neutrons and Soft Matter. Aurel RADULESCU Jülich Centre for Neutron Science JCNS, Outstation at MLZ, 85747 Garching, Germany 7 July 2014. Outline. Soft Matter – definition , examples , applications Soft Materials – structural and dynamical properties
E N D
Neutrons and Soft Matter Aurel RADULESCU Jülich Centrefor Neutron Science JCNS, Outstation at MLZ, 85747 Garching, Germany 7 July 2014
Outline • Soft Matter – definition,examples, applications • Soft Materials – structuralanddynamicalproperties • Relevanceof Neutron Scattering • Small-Angle Neutron Scattering (SANS) • Neutron Spin-Echo (NSE) • SANS and NSE at JCNS and FZJ • Conclusions
Soft Matter – Definition Soft Materials • “molecular systems giving a strong response to very weak command signal” PG deGennes (1991) • - easily deformed by small external fields, including thermal stresses and thermal fluctuations • - relevant energy scale comparable with RT thermal energy • - subtle balance between energy and entropy rich phase behavior and spontaneous complexity crystallinestate Soft Matter liquid state structure: shortrangetolongrange order dynamicresponse: elasticandviscousproperties
Soft Materials Soft Matter materials: common features • structural units: much larger than atoms • large molecules, assemblies of molecules that move together • large, nonlinear response to weak forces • slow, non-equilibrium response mechanicalresponserubbers elongatedseveralhundred % ofinitiallenght no linear relationbetween stress andstrain response time liquid ~ 10-9 s polymer orcolloidalsolution ~ 1 … 10-4 s
Soft Matter – qualitative and quantitative “Soft” – qualitative property shear modulus G – quantitative parameter restoring force of a deformed material which tends to recover its own shape (elastic materials) “softness” – smallness of G bulk modulus K of soft mater same order as for metals shearmodulus ShearmodulusG metals: some 10 GPa soft matter: < 0.1 GPa liquids: 0 Gpa Bulk modulus K metalsand soft matter: >1 GPa bulkmodulus
Example: molecularvsmacromolecularcrystals macromolecular (colloidal) crystals: molecule size ~1mm molecular crystals (NaCl): unit size ~ 1Å unit size molecular crystal << unit size colloidal crystal F – shearingforce DL – crystaldeformation G ~ energy/(length)3 typicalinteractionenergy ~ kBT Gcolloidalcrystalis 12 ordersof magn. smallerthanGusualcrystal S. Kaufmann et al. J Mater Sci (2012) 47:4530–4539
Examplesof soft matter systems • Complexfluidsincludingcolloids, polymers, surfactants, foams, gels, liquid crystals, granular andbiologicalmaterials. Y. Roiter and S. Minko AFM biological membrane
Soft Matter – high-techapplications polymericand soft compositematerialsas additives foroilindustry tyrescontainingnanostructuredaggregates: lessenergyto roll → save fuel understandingformationofnanoparticles: keyfornewproductsfromdetergentstocosmetics environmentallyfriendlycleaners
Staticproperties – statisticalparameters statistical „randomwalk“ effect segmentlength: a numberofsegments: N contourlength: Na End-to-end length Fulllengthcontour: lengthofthestretched polymer L=((bondlength)*(cos(109.47°-90°)/2))*(#C-1) Radius ofgyration (averageextensionfromthecenterofmass)
Polymer architecture homopolymer heteropolymer (diblock)
Polymer aggregates – shape distance distribution function for different shapes
Polymer conformation long-range repulsion R L aN good solvent R aN3/5 q-solvent R aN1/2 poor solvent R aN1/3 Monomer size a~0.1nm Number of monomers N~102 – 1010 Contour length L~10nm – 1m homopolymer star-like block copolymer: n and m – number of repetitive units for the blue-solvophilic and the red solvophobic blocks
Polymer morphology Morphologycal behavior of PEP-PEO in solution
Dynamicalproperties A. Wischnewski & D. Richter, Soft Matter vol. 1, 2006 Ed. G. Gompper & M. Schick polymer chains in the melt 3D Fickiandiffusion localreptation each chain can be considered to be constrained within a tube – topological constraints Rousedynamics center-of-massdiffusion
Dynamicalproperties – tubeconcept Lateral confinement Rousemodel – dynamicsofGaussianchain at intermediate scale Localreptation – randomwalk Diffusion alongthetube - reptation
Neutrons exhibitveryspecialproperties • Organicandbiologicalcompoundsconsistofprimarily C, H, N, O • Hydrogen (H) and Deuterium (D) scatterverydifferently • Simple H/D substitutionallowshighlighting / maskingstructures Ideal for Soft Matter
The form factor intraparticlecorrelations
Contrast Variation hPS-dPBmicelles (Fpol=0.25%) in different solventsfor different contrasts R. Lund et al., 2013
Experimental aspects – resolutionandpolydispersity
SANS - Examples PEP-PEO J. Stellbrink et al., 2005 structure factor effect effect of asymmetry in MW L. Willner et al., 2010
Neutron Spin-Echo Dl/l=10-20% decouplingdetectabilityoftinyvelocitychangescausedbythescatteringprocessfromthewidthoftheincomingvelocitydistribution thekeyistheneutronspin
Neutron Spin-Echo • relaxation-type scattering, functionof time • J – integral ofthemagneticinduction • – gyromagneticratio D. Richter et al., 1994 • meaningofthescatteringfunction • deuterated polymer matrixcontaining a few % protonatedchains → coherentsinglechaindynamicsin the SANS regime • sample containingonlyprotonatedchains → incoherentscatteringfunction– self-correlationofprotonsofchainsegments → segmental mean-squaredisplacement <r2(t)> fit – Rousemodel Q=1nm-1
Neutron Spin-Echo A. Wischnewski et al., 2003 plateau – topologicalconstraints theonlyfreeparameter – thetubediameter: d=6nm PEP melt, 492K Tube concept – pair correlationfunctionof a singlechain in themelt
SANS and NSE at JCNS@MLZ KWS-2 SANS diffractometerl=4.5 .. 20Å; Dl/l=2%..20% max. flux 2x108 ncm-2 s-1 Q-range: 1x10-4 .. 0.5Å-1 (withlenses) J-NSE spectrometer l=4.5 .. 16Å; Dl/l=10% Fourier time ranget=2ps.. 350ns
Phase behaviorof C28H57-PEO M. Amann et al., 2014 expected change in aggregation number Nagg → exploring the phase diagram usingchopper at KWS-2: solid-solid phasetransition fcc→ bcc observed f=15% f=30% fcc
Conclusions • Soft Matter Systems – greatrichnessofproperties, complexsystems • SANS – uniquemethodforstructuralinvestigation • NSE – uniquemethodfordynamicalinvestigation • KWS-2 & J-NSE – dedicatedneutronscatteringinstrumentsto soft-matter systems