1 / 6

垂径定理

垂径定理. The diameter which is perpendicular to a chord of the circle …. bisects the chord. and the arc. 已知:在⊙ O 中, CD 是直径, AB 是弦, CD⊥AB ,垂足为 E 。求证: AE = BE 。. C. O. E. A. B. D. 证明: 连结 OA 、 OB ,则 OA = OB 。. 因为垂直于弦 AB 的直径 CD 所在的直线既是等腰三角形 OAB 的对称轴又是⊙ O 的对称轴,.

zeroun
Download Presentation

垂径定理

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 垂径定理 The diameter which is perpendicular to a chord of the circle … bisectsthe chord and the arc.

  2. 已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E。求证:AE=BE。已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E。求证:AE=BE。 C . O E A B D 证明:连结OA、OB,则OA=OB。 因为垂直于弦AB的直径CD所在的直线既是等腰三角形OAB的对称轴又是⊙ O的对称轴, 所以,当把圆沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合。 因此,AE=BE。

  3. C . O E A B D 垂直于弦的直径平分这条弦 并且平分弦所对的两条弧。 题设 结论 平分弦 平分弦所对的优弧 平分弦所对的劣弧 过圆心 垂直于弦 }

  4. × 平分弦的直径垂直于弦。 平分弦(不是直径)的直径垂直于弦 ,并且平分弦所对的两条弧。 弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 A perpendicular bisector of a chord passes through the centre and bisects the arc. A diameter bisecting a chord ( not diameter ) is perpendicular to the chord and bisects the arc. 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  5. 根据垂径定理及其推论可知对于一个圆和一条直线来说。如果具备根据垂径定理及其推论可知对于一个圆和一条直线来说。如果具备 (1)过圆心 (2)垂直于弦 (3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧 上述五个条件中的任何两个条件都可以推出其他三个结论。

  6. When you find the first mushroom ( 蘑菇 ) , you should look aroud because they always grow together.

More Related