1 / 12

一般化線形モデル( GLM ) generalized linear Models

一般化線形モデル( GLM ) generalized linear Models. データ解析のための統計モデリング入門 久保拓也(2012) 岩波書店. Generalized Linear Models. Linear Model response variable ~  intercept + slope * explanatory variable lm(y~ x + f ・・・ ) , lm(y~x + f -1) (no intercept). require(graphics)

zev
Download Presentation

一般化線形モデル( GLM ) generalized linear Models

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 一般化線形モデル(GLM)generalizedlinearModels データ解析のための統計モデリング入門 久保拓也(2012) 岩波書店

  2. GeneralizedLinearModels • LinearModel response variable ~ intercept + slope * explanatory variable • lm(y~ x + f ・・・),lm(y~x + f -1) (no intercept) require(graphics) ## Annette Dobson (1990) "An Introduction to Generalized Linear Models". ## Page 9: Plant Weight Data. ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) group <- gl(2,10,20, labels=c("Ctl","Trt")) weight <- c(ctl, trt) lm.D9 <- lm(weight ~ group) lm.D90 <- lm(weight ~ group - 1) # omitting intercept anova(lm.D9) summary(lm.D90) opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0)) plot(lm.D9, las = 1) # Residuals, Fitted, ... Par(opar) ### less simple examples in "See Also" above

  3. GeneralizedLinearModels • LinearModel response variable ~ intercept + slope * explanatory variable • lm(y~ x + f ・・・),lm(y~x + f -1) (no intercept) • Generalized Linear Model Model &Link function ~ intercept + slope * explanatory variable • glm(y ~ x, data = d, family = poisson)

  4. PoissonModel(counting data of occurrence) • PoissonModel • λ:meanoccurrence in unit time • Identity link • Log link(canonical) • 正準リンク関数:最も自然なリンク関数:乗法効果) Link function ~ intercept + slope * explanatory variable • glm(y ~ x, data = d, family = poisson(link=“log”)) • Canonical link function is set as default

  5. PoissonModel (p49)(counting data of occurrence) • Poisson Model for number of seeds of a plant, regressed on plant size and nutrification (p49) • Maximize log-likelihood glm(y ~ x + f, data = d, family = poisson) # model p58 fit.all <- glm(y ~ x + f, data=d, family=poisson) print(fit.all) logLik(fit.all) plot(d$x, d$y, pch =c(21, 19)[d$f]) xx <- seq(min(d$x), max(d$x), length =100) lines(xx,exp(1.263 + 0.0801 * xx), lwd=2) #page 42 plant data d <- read.csv("data3a.csv") d$y # number of seeds d$x # plant size (hight) d$f # nutrification (treat-control) plot(d$x, d$y, pch =c(21, 19)[d$f])

  6. PoissonModel (p49)(counting data of occurrence) • Poisson Model for number of seeds of a plant, regressed on plant size and nutrification (p49) • Maximize log-likelihood # model p58 fit.all <- glm(y ~ x + f, data=d, family=poisson) print(fit.all) logLik(fit.all) plot(d$x, d$y, pch =c(21, 19)[d$f]) xx <- seq(min(d$x), max(d$x), length =100) lines(xx,exp(1.263 + 0.0801 * xx), lwd=2) #page 42 plant data d <- read.csv("data3a.csv") d$y # number of seeds d$x # plant size (hight) d$f # nutrification (treat-control) plot(d$x, d$y, pch =c(21, 19)[d$f])

  7. Other Generalized Linear Models(chap6 p114)

  8. GeneralizedLinearModels • Generalized Linear Model glm(y ~ x, data = d, family = poisson) • Family (Modelled Probability Distribution) • binomial(link = “logit“) 2項分布(規定試行中の発生数) • gaussian(link = “identity”) 正規分布 • Gamma(link = “inverse”)  ガンマ分布(正のみ) • inverse.gaussian(link = “1/mu^2”) 逆ガウス分布 • poisson(link = “log”) ポアソン分布(一定時間中の発生回数) • quasi(link = “identity”, variance = “constant”)正規分布(不均一) • quasibinomial(link = “logit”)2項分布(分散不均一) • quasipoisson(link = “log”)   ポアソン分布(分散不均一)

  9. Binomial Logistic Model (p118)(occurrence number in given trials) • Binomial Model for the number of survived plant in 8 obserbations, regressed on plant size and nutrification (p118) • Maximize log-likelihood glm(cbind(y,N-y) ~ x + f, data = d, family = binomial) #page 117 plant data d <- read.csv("data4a.csv") d$N # number of trials d$y # number of survived plant d$x # plant size d$f # nutrification (treat-control) plot(d$x, d$y, pch =c(21, 19)[d$f]) # model p122 fit.all <- glm(cbind(y, N-y) ~ x + f, data=d, family=binomial) print(fit.all) logLik(fit.all)

  10. Offset Term(p131)(avoid a division calculation) • Count data for several zones having different area, or different population • One way is define a density (occurrence in unit area) and apply Poisson model glm(y ~ x, offset =log(A), data = d, family = poisson) #page 133 plant data d <- read.csv("data4b.csv") d$y # number of plants in lot i d$x # brightness at lot I d$A # area of lot i plot(d$A, d$y) # model p131 fit<- glm(y ~ x, offset = log(A) , data=d, family=poisson) print(fit) logLik(fit)

  11. Gamma Distribution Model (p138) • Gamma Distribution (continuous positive data) s: shape parameter, r: rate parameter, theta=1/r: scale parameter • time length before s times occurrence of random events with occurrence rate of r. (average occurrence interval is ) • Average : Variance: • dgamma(y, shape, rate) • Weight of flower of a plant y (continuous, positive) • average weight • Loglink function of linear estimator • glm(y ~ log(x), data = d, family = gamma(link="log"))

  12. Gamma Distribution Model (p138) • Gamma Distribution (continuous positive data) • glm(y ~ log(x), data = d, family = gamma(link="log") # A Gamma example, from McCullagh & Nelder (1989, pp. 300-2) clotting <- data.frame( u = c(5,10,15,20,30,40,60,80,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12)) summary(glm(lot1 ~ log(u), data=clotting, family=Gamma)) summary(glm(lot2 ~ log(u), data=clotting, family=Gamma)) Call:glm(formula = lot1 ~ log(u), family = Gamma, data = clotting) Deviance Residuals: Min 1Q Median 3Q Max -0.04008 -0.03756 -0.02637 0.02905 0.08641 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.0165544 0.0009275 -17.85 4.28e-07 *** log(u) 0.0153431 0.0004150 36.98 2.75e-09 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 (Dispersion parameter for Gamma family taken to be 0.002446059) Null deviance: 3.51283 on 8 degrees of freedom Residual deviance: 0.01673 on 7 degrees of freedom AIC: 37.99

More Related