430 likes | 695 Views
Nuclear Energy: Problems or Solution. Helmut Rauch Atominstitut, TU-Wien. Reactors worldwide. Nuclear power stations (NPP) 441 (35 construction) Research reactors 249 (in operation) Heating units 8 Naval-Reactors (U-Boats, aircraft carrier, icebreaker) 220
E N D
Nuclear Energy:Problems or Solution Helmut Rauch Atominstitut, TU-Wien
Reactors worldwide Nuclear power stations (NPP) 441 (35 construction) Research reactors 249 (in operation) Heating units 8 Naval-Reactors (U-Boats, aircraft carrier, icebreaker) 220 Satellite reactors 26 TOTAL~ 950 Quellen - http://www.iaea.org/DataCenter/statistics.html - http://www.world-nuclear.org/info/info.htm
Electricity production worldwide EU Austria
Nuclear fission 1 kg Natururan ≐ 12.600 l Erdöl ≐ 18.900 kg Steinkohle
Specific CO2-Emissions Source: EDF Environmental Report
prompt criticality(~ 0,6% in case of U-235) • Decay heat( ca. 20 MW after 1 St.) • Waste (pro KKW:18 kg/a Np-237; 70 kg/a Am-243 ) • Terrorism Chernobyl Fukushima General problems
TEMPERATUR RÜCKWIRKUNG Doppler-Effekt Absorpion Entkommfaktor p(300K) = 0,861 p(1000K)= 0,835 Dieser Faktor ist immer negativ !!!
Xenon – Poison (Xe135)* b 30 % b g Te135 J135 30 sec. 70 % b 6,7 h Xe135 Cs135 Ba135 9,2 h 2,6 x 108 a sa= 3,4x106 b Spaltprodukte
Xenon – Poison Regelstäbe Regelstäbe Core Core Xe-135 Gleichgewicht P = 0
VOID - KOEFFIZIENT U H2O C Dr = + 0,0064 sa = 0,33b sa = 0,0034b Dr = - 0,035 Dr = - 0,08 Dr = - 0,17 U H2O
Cutaway of the Nuclear Unit 1. Core 2. Piping of water lines 3. Lower biological shielding 4. Distribution headers 5. Side biological shielding 6. Drum-separator 7. Piping of steam-water lines 8. Upper biological shielding 9. Refuelling machine 10. Demountable plating 11. Fuel channel ducts 12. Downcorners 13. Pressure header 14. Suction header 15. Main circulation pump
Cs-137 Contamination in Vienna since 1956 Erich Tschirf et al.
Radiation Exposure of the Public Inhalation of radon and its progeny ≈ 1.6 mSv Occupational radiation exposure ≈ 0.05 mSv External exposure from natural sources ≈ 1 mSv Chernobyl accident, nuclear weapon tests < 0.01 mSv Ionizing radiation and radionuclides in research, industry and household < 0.02 mSv Ingestion of natural radionuclides ≈ 0.3 mSv Ionizing radiation and radionuclides in medicine ≈ 1.3 mSv ≈ 4.3 mSv
prompte Kritikalität(~ 0,6% bei U-235) • Decay heat( ca. 20 MW nach 1 St.) • Abfall (pro KKW:18 kg/a Np-237; 70 kg/a Am-243 ) • Terrorismus Chernobyl Fukushima Problems
Decay heat Nachzerfallswärme der Spaltprodukte
Fukochima Daiichi 1-6 Siedewasserreaktor I-1: 440 MW I-2: 760 MW I-3: 760 MW I-4: 760 MW I-5: 760 MW I-6: 1067 MW 20
Emergency operation Core melting Normal operation H2 explosion Spent fuel pool problem Venting H2O and H2
Fakten • Das Japan Desaster ist eine Folge des Erdbebens der Stärke 9. • Der Zumani ist eine Folge davon. • Die Probleme mit den Kernkraftwerken sind ebenfalls eine Folge davon.
Press Articles „on Fukushima“: until 14.04.2011 Germany43.640 All other EU member states 9.300 Source: Meltwater News
Consequences • Increasing safety • passive safety measures • Man independent safety features • Increasing time for passive safety handling • Construction accepting large accidents • Standardisation, Modul Structure • Improving economic factors
European Pressured Water Reactor - EPR melted core pot
prompte Kritikalität(~ 0,6% bei U-235) • Nachzerfallswärme( ca. 20 MW nach 1 St.) • Waste (pro KKW:18 kg/a Np-237; 70 kg/a Am-243 ) • Terrorismus Chernobyl Fukushima Problemfelder
Waste Radiotoxizität ohne und mit Transmutation
Spallation Process Each heavy nucleus can be transfered to a light and short living one ~ 1 GeV
Accelerator Driven Nuclear Systems Probleme: • high current accelerator • high activity handling • window problems • nuclear transmutation • nuclear energy • no transient behavior
Fusion Probleme: 100 Mill. Grad kg Mengen von Tritium Magneteinschluss
ITER-FEAT Design International Thermonuclear Experimental Reactor- Fusion Energy Amplifier TOKAMAK Design Central Solenoid Blanket Module Vacuum Vessel Outer Intercoil Structure Cryostat Toroidal Field Coil Port Plug (EC Heating) Poloidal Field Coil Divertor Machine Gravity Supports Torus Cryopump
SUMMARY More nuclear energy More efficient and safer installations Nuclear Transmutation as an Option Fusion in 50 Years ? In Europe and oversea
Abfall Radiotoxizität ohne und mit Transmutation
Deutschland Österreich
__________________________ Fortschrittliche Reaktoren - EPR Reaktorgebäude • zylindrisch • doppelschalig • gegen Absturz eines schnellfliegenden Militärflugzeuges ausgelegt ___________________________ Otmar Promper Atominstitut der Österreichischen Universitäten
__________________________ Fortschrittliche Reaktoren - EPR Beherrschung von Kernschmelzunfällen • Opfermaterial zur Temperaturabsenkung • Ausbreitungsfläche • passive Einrichtungen zur Kühlung
Electricity Production in Germany (2008 – 2010) TWh 24% 23% 57% Fossil 23% Nuclear 16% Renewables 19% 13% 6% 5% 4% 3% 2% 1% Installed capacity 14 % 13% 18% 15% 3% 17% 11%