1 / 20

PageRank + Inverted Index

PageRank + Inverted Index. Un Motor de Búsqueda. “ obama ”. PageRank Model: Final Version. The Web: a directed graph . Edges ( links ). Vertices ( pages ). f. a. e. b. d. c. Input Structure. 31.5 million edges 960,109 nodes document-with-link document-linked.

zihna
Download Presentation

PageRank + Inverted Index

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PageRank + Inverted Index

  2. Un Motor de Búsqueda

  3. “obama”

  4. PageRank Model: Final Version • The Web: a directed graph Edges (links) Vertices (pages) f a e b d c

  5. Input Structure • 31.5 million edges • 960,109 nodes document-with-link document-linked

  6. Step 0. Start Downloading Datasets • http://aidanhogan.com/teaching/cc5212-1/mdp-lab9-data/ • page_links_es_f.tsv.gz • wiki_abstracts_es.tsv.gz • http://aidanhogan.com/teaching/cc5212-1/mdp-lab9.zip

  7. Step 1. Dictionary Encode Links • Strings difficult to fit in memory • Encode strings as OIDs (object ids = integers) • Input line: http://es.wikipedia.org/wiki/Ciencia_ficción http://es.wikipedia.org/wiki/Robot • Output line: • 52673 • Dictionary: • http://es.wikipedia.org/wiki/Ciencia_ficción … 52673 http://es.wikipedia.org/wiki/Robot … • OIDCompress -i[folder]/page_links_es_f.tsv.gz -igz-o [folder]/page_links_es_f.oid.gz -ogz-d [folder]/page_links_es_f.dict.gz -dgz

  8. Step 2. Copy PageRank Code • Copy PageRankGraph.java from mdp-lab8 to mdp-lab9 (same package) • Use your code to be marked on it! • Marked from 20 for this lab • If you weren’t here last week, copy PageRankGraph.java from http://aidanhogan.com/cc5212-1/mdp-lab9-data/ • Marked from 10 for this lab

  9. Step 3. Rank and sort full data • Run ranking (PageRankGraph.java) • 50 iterations: ITERS = 50 -i [folder]/page_links_es_f.oid.gz -igz -o [folder]/page_ranks_es_f.oid.tsv.gz –ogz • Sort ranks by rank score (SortByRank.java) -i [folder]/page_ranks_es_f.oid.tsv.gz -igz -o [folder]/page_ranks_es_f_s.oid.tsv.gz –ogz

  10. Step 4. Make Predictions & Bets Which will be the highest ranked articles in Wikipedia according to PageRank?

  11. Step 5. Decode the ranks • Decode the file (OIDDecompress.java) -d [folder]/page_links_es_f.dict.gz -dgz -i [folder]/page_ranks_es_f_s.oid.tsv.gz -igz -n 0 -o [folder]/page_ranks_es_f_s.tsv • Open the output in a text editor and have a look 

  12. Step 6. Copy Inverted Index Code • Copy IndexTitleAndAbstract.java and SearchIndex.java from mdp-lab7 into mdp-lab9 (if you were here) • Otherwise grab them from http://aidanhogan.com/cc5212-1/mdp-lab9-data/

  13. Step 7. Rebuild Inverted Index • IndexTitleAndAbstract.java -i [folder]/wiki_abstracts_es.tsv.gz -igz -o [folder]/es_wiki_index/ • Try searches using SearchIndex.java • Copy the top 10 results for 5 searches including ‘obama’ and ‘universidad’ into a text file somewhere

  14. Step 8. Add in the boost values • Open BoostRanks.java • Follow the board to code  • Run: -o [folder]/es_wiki_index/ -i[folder]/page_ranks_es_f_s.tsv

  15. Step 9. Profit • Re-run the same five queries as before over the boosted index and see if the results improve • http://www.lucenetutorial.com/lucene-query-syntax.html

  16. Course Marking • 45% for Weekly Labs (~3% a lab!) • 35% for Final Exam • 20% for Small Class Project

  17. Class Project • Done in pairs (Except Alejandro/Mauricio :P) • Goal: Use what you’ve learned to do something cool (basically) • Expected difficulty: More than a lab’s worth • But from scratch / without my help! • Marked on: Difficulty, appropriateness, scale, good use of techniques, presentation, coolness • Ambition is appreciated, even if you don’t succeed: feel free to bite off more than you can chew! • Process: • Pair up (default random) by Wednesday • Decide on a topic (by June 9th) or let me assign one  • If you need data or get stuck, I will (try to) help out • Deliverables: 10 minute presentation (June 23rd) & 4-page report • 2 weeks!

  18. Groups Pairings: • Catalina Espinoza y Felipe Quintanilla • Eduardo Acha y Jaime Salas • Francisca Concha y Nicolás Miranda Lone agents: • Alejandro Infante • Mauricio Quezada

  19. Topics Let’s talk topics  • Catalina Espinoza y Felipe Quintanilla • Eduardo Acha y Jaime Salas • Francisca Concha y Nicolás Miranda • Mauricio Quezada • What’s the idea? • What will be the result of your project? • How much data will you process/where will you source it? • Which techniques from the class will you use? • How cool is it?

More Related