370 likes | 565 Views
Chapter 22 Descent with Modification: A Darwinian View of Life. A. Historical context for evolutionary theory – who led up to Darwin? 1. Two early views about life were explained by the scale of nature and natural theology
E N D
Chapter 22 Descent with Modification: A Darwinian View of Life
A. Historical context for evolutionary theory – who led up to Darwin? 1. Two early views about life were explained by the scale of nature and natural theology - Scale of nature: all living things are arranged on a scale of increasing complexity (Aristotle). All species are permanent with no evolution. All species are “ideal” and perfectly adapted to their environment (400 BC). - Naturaltheology: the study of nature to discover God’s plan (1700s). Each species was designed by the Creator to serve a specific purpose.By discovering, naming and classifying all species, mankind could “divine” the Creator’s plan.
- Carolus Linnaeus (1707-1778) developed a two-part (binomial) system of naming organisms that we still use today that is based on a genus and species designation (e,g. Homo sapiens). Taxonomy is the branch of biology concerned with naming and classifying organisms. Note in Figure 22.2, that Darwin built his ideas about evolution on a base that was established by others.
2. Georges Cuvier - primarily developed paleontology by studying fossils that are relics or impressions of organisms preserved in rock. Noted that sedimentary strata contain unique groups of organisms. - Deeper strata contain species that are often very different from those present today. - Rather than follow evolution, Cuvier believed in catastrophism. Catastrophism is the idea that each strata boundary corresponds to some catastrophic event, such as flood.
3. Theories of gradualism • - James Hutton (1726-1797) introduced the theory of gradualism which is in contrast to catastrophism. • Gradualism holds that geological changes are the cumulative product of slow, continuous processes. • - Charles Lyell (1797-1875) took Hutton’s idea and used it to introduce the theory of uniformitarianism. • Uniformitarianism refers to the idea that geologic processes have not changed throughout earth’s history. That means that volcanoes, sedimentation, etc. that we observe today have occurred since the beginning of time. • Importance of these theories? Stretch earth’s history back further and further into time.
4. Jean Baptiste Lamarck placed fossils in an evolutionary context and published a theory of evolution in 1809. His theory used two common ideas of his time: a. Use and disuse à parts of the body used on a regular basis become larger and stronger; those not used deteriorate. And, b. Inheritance of these acquired characteristics (the modifications) are passed onto the offspring. - Lamarck’s theory was based on observations of fossils, but gave no mechanism for evolution. However, he set the stage for Darwin.
B. The Darwinian revolution 1. Field research framed Darwin’s view of life. One of his primary observational sites was the Galapagos Islands - He learned that most species there occur nowhere else in the world, but many resemble species in South America. - Species on the islands are related to each other but, like finches, were adapted to different lifestyles. Figure 22.6 (p. 443) – Galapagos finches.
2. Darwin focused on adaptation • a. How species adapt to succeed in changing or different environments, for example, new birds land on the Galapagos Islands… how do all the different species come about? • 3. His theory was: Descentwithmodification the phrase used by Darwin to describe what he had observed during his research. • This concept was later worked into Darwin’s theory on evolution. • Figure 22.7 (p. 444) – Descent with modification.
- Think of descent with modification in terms of a branching tree. Over time, organisms enter/experience new environments which lead to changes in the population of organisms (ADAPTATION). These changes cause divergence, i.e. the branches of the tree. Closely related species are closest together in the tree. The trunk represent a common ancestor. Evolutionary Tree - The Linnaean classification scheme fits the concept of an evolutionary tree à genus and species may differ, but still belong in the same family.
4. What drives adaptation? Natural selection. Darwin’s theory on natural selection was based on these observations: i. All species have the potential to overproduce offspring. If they continued to do so, they would use up all of the world’s resources. ii. However, if we look at populations we see that they are stable, except for seasonal fluctuations, or unless changed by man altering the environment. iii. Thus, environmental resources limit their production. Inference from these observations is that: 1. Conditions lead to a struggle for existence among individuals of a population.
Other observations: iv. Individuals within a population have varying characteristics. v. Much of the variation is heritable (genetic). The inferences from these observations are that: 2. Individuals with traits that allow them to outcompete other individuals will survive and reproduce. 3. These favorable traits are maintained in the future generations, leading to gradual changes in the population. This is Darwin’s Theory of Natural Selection!
Natural selection occurs because of differential success in reproduction. It is driven by interactions of variable individuals with their environments. Those individuals with the most favorable traits will succeed to produce more offspring. • The product of natural selection is adaptation (evolution) of organisms to their environments.
Remember: - Populations are members of a species that interbreed. - A population is the smallest unit that can evolve. - Natural selection occurs because of interactions between organisms and their environments. - Natural selection works to increase or decrease the occurrence of heritable traits. Examples?? - Individuals are selected, but populations evolve. Examples: - See Fig. 22.10 – Evolution of insecticide resistance in insect populations. – Evolution of drug resistance in HIV.
5. Evidence of evolution a. Homology refers to a similarity in characteristics due to common ancestry. Figure 22.14 (p. 449) – Homologous structures: anatomical signs of descent with modification. - Examples of anatomical homology include skeletal components of forelimbs, and vestigial organs in some organisms. Anatomical structures are not uniquely engineered. There are similarities between species showing possible links in natural selection and evolution.
Embryological evidence: all vertebrates have pharyngeal pouches – gills. See also, Fig. 22.15, p. 449.
Molecular evidence: DNA/RNA is a universal genetic code. Other molecular evidence: homologies basically follow the tree of life. More closely related organisms have more homologous molecules. See also, Figure 22.16 (p. 450)
b. Biogeography is the geographic distribution of species. - Species found in the same area on earth are typically closely related. Figure 22.17 (p. 450) – Different geographic regions, give rise to different mammalian “brands.” Although these two organisms look alike, that is they evolved to fill the same niche, they are not closely related.
c. Fossil Record - We can see the development of present day species from ancestral species.