90 likes | 472 Views
DISTRIBUCIÓN BINOMIAL. Bloque IV * Tema 172. DISTRIBUCIÓN BINOMIAL. Muchos experimentos sociales quedan determinados por dos sucesos contrarios: Hombre o mujer; mayor de 18 años o menor de 18 años; trabajador o en paro; etc.
E N D
DISTRIBUCIÓN BINOMIAL Bloque IV * Tema 172 Matemáticas Acceso a CFGS
DISTRIBUCIÓN BINOMIAL • Muchos experimentos sociales quedan determinados por dos sucesos contrarios: Hombre o mujer; mayor de 18 años o menor de 18 años; trabajador o en paro; etc. • La distribución de probabilidad discreta que estudia estos experimentos recibe el nombre dedistribución binomial. • En general, a estos dos sucesos contrarios los calificamos por éxito (E) y fracaso (F). • Esta distribución queda caracterizada por: • (1) El resultado de una prueba del experimento aleatorio debe concretarse en dos únicas opciones que, como se ha dicho, llamaremos éxito (E) y fracaso (F). • (2) Se realizan n ensayos del experimento, independientes unos de otros. • (3) La probabilidad de éxito es constante a lo largo de las n pruebas y suele denotarse por p. • P(E) = p • Por tanto, la probabilidad de fracaso también es constante e igual a 1-p = q. • P(F) = q = 1 – P(E) = 1 – p • (4) La variable aleatoria X cuenta el número r de éxitos en las n pruebas: • r = 0, 1, 2, ..., n • Por tanto, los valores que puede tomar X son: 0, 1, 2, ..., ni. • Tal variable binomial queda caracterizada por los parámetros n y p, y se escribe • B(n, p) Matemáticas Acceso a CFGS
DISTRIBUCIÓN BINOMIAL • Ejemplo 1 • En una reunión hay 40 hombres y 60 mujeres. Se elige una persona al azar, anotando el sexo de dicha persona. Se repite el experimento 30 veces. Hallar la probabilidad de que en 10 ocasiones el resultado haya sido “hombre”. • Es una experiencia dicotómica. • P(E) = p =40/100 = 0,40 • P(F) = q = 1 – 0,40 = 0,60 • n= 30 veces que se repite el experimento. • La binomial queda caracterizada por B(n, p) B(30, 0,30) • Hay que hallar P(x=10) • Notas importantes: • El experimento se puede repetir un número de veces mayor que la cantidad de personas que hay. Podemos repetir el experimento 500, aunque hubiera sólo 3 personas en la reunión. • Nos pueden pedir probabilidades tales como: P(“Que de las 30 veces que se ha repetido al menos en dos ocasiones halla sido hombre”) • P(x ≥ 2) = P(x=2)+P(x=3)+…+P(x=30) • O también: P(x ≥ 2) = 1 – P(x < 2) = 1 – [ (P(x=0) + P(x=1) ] Matemáticas Acceso a CFGS
DISTRIBUCIÓN BINOMIAL • Ejemplo 2 • Un cazador tiene una probabilidad de 0,65 de acertar a una pieza en cada disparo. Si realiza 20 disparos, hallar la probabilidad de … • a) Que no cace ninguna pieza. • b) Que cace 7 piezas. • c) Que cace al menos 3 piezas. • Es una experiencia dicotómica, pues acierta el tiro o falla el tiro. • P(E) = p =0,65 • P(F) = q = 1 – 0,65 = 0,35 • n= 20 veces que se repite la experiencia de disparar. • La binomial queda caracterizada por B(n, p) B(20, 0,65) • a) P(x=0) • b) P(x=7) • c) P(x≥3) =P(x=3)+P(x=4)+…+P(x=20) • P(x≥3) = 1 - P(x<3) = 1 – [ P(x=0)+P(x=1)+P(x=2) ] • Nota: Los cálculos necesarios para completar el ejemplo se ven más adelante. Matemáticas Acceso a CFGS
DISTRIBUCIÓN BINOMIAL • Ejemplo 3 • Una máquina produce 32 tornillos defectuosos cada 1000 unidades. Al realizar un control de calidad tomamos una caja de 50 tornillos. Hallar la probabilidad de que … • a) Ningún tornillo resulte defectuoso. • b) Halla 37 tornillos defectuosos. • c) Halla menos de 3 tornillos defectuosos. • Es una experiencia dicotómica, pues cada tornillo examinado está defectuoso o no. • P(E) = p =32/1000 = 0,032 • P(F) = q = 1 – 0,032 = 0,968 • n= 50 veces que se repite la experiencia, al examinar los 50 tornillos de la caja. • La binomial queda caracterizada por B(n, p) B(50, 0,032) • a) P(x=0) • b) P(x=37) • c) P(x<3) = P(x=0) + P(x=1) + P(x=2) • Nota: En este ejemplo, como en todos los demás, P(x=0)+P(x=1)+P(x=2)+…+P(x=n)=1 • Por el Teorema de la Probabilidad Total, al ser los “n” sucesos independientes. Matemáticas Acceso a CFGS
DISTRIBUCIÓN BINOMIAL • Los experimentos o experiencias que quedan determinados por dos sucesos contrarios reciben el nombre de experiencias dicotómicas. • En general, cualquier distribución de probabilidad discreta se puede reducir a una experiencia dicotómica: • Ejemplo_1 • Lanzamos un dado al aire. • Hay seis sucesos posibles. Y cada suceso tiene su probabilidad (pi=1/6). • Pero si lo que nos interesa es obtener un 6, reducimos los sucesos a dos: • P(“Obtener un seis”) = 1/6 • P(“No obtener un seis”) = 5/6 • Y hemos convertido el experimento no dicotómico en dicotómico. • P(E) = p=1/6 • P(F) = q= 5/6 • B(n, 1/6) • Donde n es la cantidad de veces que lanzamos el dado. • Lo mismo haríamos si el resultado deseado (Éxito) fuera un 5 en lugar de un seis. Matemáticas Acceso a CFGS
DISTRIBUCIÓN BINOMIAL • Ejemplo_2 • En una población conocemos: • P(“Un habitante gane 0 € /mes”) = 0,25 • P(“Un habitante gane 500 € /mes”) = 0,25 • P(“Un habitante gane 1000 € /mes”) = 0,20 • P(“Un habitante gane 1500 € /mes”) = 0,20 • P(“Un habitante gane 2000 € /mes”) = 0,10 • Si lo que nos interesa es que gane más de 1000 € /mes, reducimos la distribución de probabilidades discretas a una distribución binomial: • P(“Un habitante gane más de 1000 € /mes”) = 0,20+0,10 = 0,30 • P(“Un habitante no gane más de 1000 € /mes”) = 1 – 0,30 = 0,70 • Y hemos convertido la experiencia no dicotómica en dicotómica. • P(E) = p=0,30 • P(F) = q= 0,70 • B(n, 0,30) • Donde n es la cantidad de veces que lanzamos el dado. • Lo mismo haríamos si el resultado deseado (Éxito) fuera que ganara hasta 500 €. Matemáticas Acceso a CFGS