430 likes | 606 Views
Measurement of neutron emission spectra and activation in Li, Be,C,Al,Fe,Ta(d,n) reactions by in the 20-40 MeV region. M.Baba, M.Hagiwara, T.Itoga, T.Aoki Cyclotron & Radioisotope Center, Tohoku University , Japan M.Sugimoto Japan Atomic Energy Research Institute, Tokai Establishment, Japan
E N D
Measurement of neutron emission spectra and activation in Li, Be,C,Al,Fe,Ta(d,n) reactions by in the 20-40 MeV region M.Baba, M.Hagiwara, T.Itoga, T.Aoki Cyclotron & Radioisotope Center, Tohoku University , Japan M.Sugimoto Japan Atomic Energy Research Institute, Tokai Establishment, Japan T.Muroga, National Institute for Fusion Research, Toki, Japan ****CONTENTS******* 1. Introduction 2.Apparatus & Experimental Methods 3. Results; Neutron spectra & Activation 4.Summary
1. INTRODUCTION • In IFMIF ・ Neutron spectrum extends beyond 50 MeV (High energy tail) ・ Neutrons show very strong angular dependence ・ Beam intensity is as high as 250 mA Design & maintenance of IFMIF require the data on ・Energy-angular distribution of (d,n) neutrons; Li, accelerator structural elements ・ Production/ accumulationof radioactive nuclides 3H , 7Be, 22Na, 24Na etc Experimental data were very few and discrepant
INTRODUCTION(2) 7Li(d,n) TTY; M. A. Lone et al. Nucl. Instrum. and Methods 143 (1977) 331-344* Large discrepancies, Energy range is limited
In this study 1. Neutron spectrum from thick, thin targets of -Li, Be, C, Al, Fe, Ta - @ 25, 40 MeV - 0-110-deg. ・Comparison with exp., calculations ・Systematics vs mass 2. Radio-nuclide production -Li, Be, C, Al, Fe, (Ta) - 7Be, 22Na, 24Na, etc
2. Experimental Apparatus Cyclotron & Radioisotope Center, Tohoku University (CYRIC) • Performance of • K=110 AVF cyclotron • Protons 10-90 MeV • Deuterons 10-65 MeV • 3He 20-170 MeV • 4He 20-130 MeV • ・Heavy Ions • ・Beam Chopper etc. Layout of CYRIC Beamchopper Beam swinger Flight path Automated-irradiation apparatus Online-mass separator Semiconductor Irradiation apparatus
CYRIC TOF Line Beam-swinger & Well collimated TOF channel Beam-swinger system Setup detectors at two locations
Copper Mesh(-500V) TOF Measurement MCS 3 parameter list mode ・2-gain ・2-flight path
Sample HV+4000V Ge detector γray Amp 19 cm MCA Radio-nuclides production deuteron neutron spectrum meas. After TOF measurement, γ-ray measurement with Ge detector 4-1. SETUP 4-2. γ-ray spectrum
TOF data processing low-gain raw data high-gain raw data n-event -event -event n-event Pulse height [channel] Pulse height [channel] n-discrimination [channel] n- discrimination [channel]
Derivation of neutron spectrum • n-γdiscrimination • Bias setting ; ~ 0.6 MeV for high-gain, ~3.5 MeV for low-gain • TOF to energy spectrum • m0 :Rest mass of a neutron • I : Channel number of the events • L : Flight path • c : Light velocity. • Absolute scale; detector efficiency,solid-angle, current • (SCINFUL-R code). • Corrections for attenuation in target (air:LA150) • just stopping length to avoid excessive correction
Radionuclide production (1) Beam fluctuation with MCS 1) Reaction rate 2) Number of products : decay constant (s-1), C : total counts of gamma-ray peak area, : peak efficiency, Tc : cooling time (s), : branching ratio of gamma rays, Tm: counting time (s), Qi : beam current (Coulomb) for irradiation time interval Dt (s) [using Multi Channel Scaler : MCS] N : number of produced atoms in the target (atom), A : dps/(A·h) I : beam current (A) T : irradiation total time (h) 3) Activity
Rdionuclide production (2) 4) Cross-section Energy determination & attenuation correction • Energy of each stack sample • -TRIM code • Attenuation of sample • - Shen’s empirical formula
3. Results & Discussion 1. Neutron spectrum; 0~110-deg. ・Li, Be Ed= 25 MeV thick, thin (Li) Ed= 40 MeV thick, thin (Li) ・C, Al, Fe, Cu, Ta, W Ed= 40 MeV thick 2. Radionuclide production Target: Li, C, Al, Fe, Ta, W Nuclides; 7Be, 22Na, 24Na,
natLi(d,xn) Ed = 25 MeV Thick lithium natLi(d,xn)0-deg for 25 MeV Comparison with Lone’s data
natLi(d,xn) Ed = 40 MeVThick and thin lithium thick natLi(d,xn) for Ed= 40 MeV [7Li(d,n) Qvalue=+15.0 MeV] thin natLi(d,xn) for Ed= 40 MeV [7Li(d,n) Qvalue=+15.0 MeV]
natBe(d,xn) [9Be(d,n) Q値=4.36 MeV] natLi(d,xn) [7Li(d,n) Q値=+15.0 MeV]
Neutron yields 4π-integrated 0゜- differential
D 25 MeV thin spectra: Serber / Advanced Serber model * * H.Utsunomiya (MSU); Phys. Rev., C32 (1985) 32
Fe, Ta(d,n): comparison • J. P. Meulders, et al., Phys. Med. Biol., 20, (1975) 235-243 • K. Shin, et al., Phys. Rev. C, 29, (1984) 1307-1316
Cross-section systematicsvsmass (d,n) @Ed=40MeV • Li(d,n) : largest yields • C(d,n) : yield is larger than heavy element • M. Hagiwara, et al., • J. Nucl. Materials, 329-333, (2004) 218-222 • M. Hagiwara, et al., • J. Fusion Sci. Tech., in print
Spectrum mass-dependence ・Spectrum becomes softer with mass • M. Hagiwara, et al., • J. Nucl. Materials, 329-333, (2004) 218-222 • M. Hagiwara, et al., • J. Fusion Sci. Tech., in print
Radionuclide production natLi(d,x)7Be activation cross-section ,natLi(d,x)7Be activity (TTY) lithium (IFMIF target)Ed= 40, 38.6, 29.7, 28.2, 19.7, 17.7, 10, 7.05 MeV natLi(d,x)7Be activation cross-section natLi(d,x)7Be activity (TTY)
natC(d,x)7Be ・PHITS code (JQMD and GEM) 27Al(d,x)7Be ・PHITScode ・other exps.
27Al(d,x)24Na ・PHITS code ・Other Exps. ・Recommendation 27Al(d,x)22Na ・PHITS code ・Other Exps. ・Recommendation
Estimation 27Al(d,x)24Na activity (TTY) natC(d,x)7Be activity (TTY) ・compare with IAEA 27Al(d,x)22Na activity (TTY) 27Al(d,x)7Be activity (TTY) ・compare with IAEA data
FeActivation cross-section (I) natFe(d,x)52Mn natFe(d,x)51Cr *TALYS is a nuclear reaction program using update code parameter created at NRG Petten.
FeActivation cross-section (II) natFe(d,x)58Co natFe(d,x)57Co natFe(d,x)56Co
Summary & Future 1.Measurements of neutron spectrum for (d,nx) reactions 1)Li,Be, C,Al,Fe,Cu,Ta - Ed=40, 25 MeV, - 0~110 deg - Energy spectrum shape was clarified, high energy tail 2) Systematics vs target mass 2. Production yields of radio-nuclides via (d,x) reaction 1) Li,C,Al,Fe,Cu,Ta Provided data base for IFMIF optimization & post irradiation analysis Future program: Deuteron induced reactions & neutron induced reactions * CDCC (Continuum-discritized coupled-channel)model; BRC * Extended Serber model ?
CYRIC new neutron course (@TR3 extension) 3~100 A p beam beam dump 7Li(p,n) 74 cm • Software error rate • n-induced activation, reaction • few-body reactions, etc. Ep = 50 MeV, E = 2 MeV mono-En flux 106n/cm2sA
Reference • [1] IFMIF CDA TEAM, IFMIF Conceptual Design Activity Final Report edited by Marcello Martone, Report 96.11, Enea, Dipartimento Energia, Frascati (1996) • [2] M.A.Lone et al., Nucl. Instrum. Methods, 143 (1977) 331 • [3] M. Baba, T. Aoki, M. Hagiwara et al., J. Nucl. Materials 307-311 (2002) 1715-1718. • [4] T. Aoki, M. Hagiwara, M. Baba et al., J. Nucl. Sci. and Tech. to be published • [5] A.Terakawa et al., Nucl. Instrum. Methods A 491 (2002) 419. • [6] M. Baba, H. Wakabayashi, M. Ishikawa, T. Ito and N. Hirakawa, J. Nucl. Sci. Technol., 27(No.7), 601 (1990) • [7] T. Aoki , M. Baba, S. Yonai, N. Kawata, M. Hagiwara, T. Miura, T. Nakamura, Nucl. Sci. Eng., in print • [8] J. F. Ziegler, J. P, Biersack, U. Littmark, Pergamon Press, New York (1984). • [9] S.Meigo Nucl. Instrum. Methods in Physics Research A 401 (1997) 365 • [10] M. B. Chadwick, P. G. Young et al., Nucl. Sci. Eng. 131, 293, 1999 • [11] W.Nelson, H.Hirayama, D.W.O.Rogers, “The EGS4 Code System” SLAC-265, Stanford University, Stanford (1985) • [12] W. Q. Shen, B. Wang, J. Feng, W. L. Zhan, Y. T. Zhu and E. P. Feng, Nucl. Phys. A, 491, 130 (1989) • [13] J. P. Meulders et al. Phys. Med. Biol., 20, p.235, 1975 • [14] Z. Radivojevic, A. Honkanen, J. Aysto, V. Lyapin, V. Rubchenya, W. H. Trzaska, D. Vakhtin and G. Walter, Nucl. Instr. and Meth. B., 183, p.212, 2001 • [15] S.P.Simakov, U.Fisher, U.von Mllendorf, I.Schmuck, A.Yu.Konobeev, Yu. A. Korvin, P.Pereslavtsev; J. Nucl. Materials, 307-311 1710-1714 (2002) • [16] S. Takacs, F. Szelecsenyi, F. Tarkanyi, M. Sonck, A. Hermanne, Yu. Shubin, A. Dityuk, M.G. Mustafa, Z. Youxiang, Nucl. Instr. and Meth. B., 174 (2001) 235-258 • [17] U. Martens and G. W. Schweimer, Zeitschrift für Physics 233 (1970) 170 • [18] IAEA, Charged-particle cross section database for medical radioisotope production • http://www-nds.iaea.org/medical/ • [19] H. Iwase, K. Niita, T. Nakamura, J. Nucl. Sci. Tech. 39, No.11, 1142 (2002)
Differential TTY of natC: 12C(p,n), 13C(p,n) Ep=50 MeV Ep=70 MeV
3. Differential TTY (Thick target neutron yield) ・Scarcity of experimental data for whole spectrum “Measurement of full energy range ” ・Target: 30-mm-diam x full stop thickness 0-110 deg., ・Efficiency; SCINFUL-R Correction; Attenuation in target, air ・Comparison with LA-150
TTY: W(p,n) Ep=50 MeV Ep=70 MeV
1. はじめに (4) 目 的 1. IFMIF加速器構成材核種の(d,n)中性子スペクトルの測定 ・Li, C, Al, (Fe, Cu) ・Ed=25- 40 MeV, 0 – 90゜ ・厚いターゲット,薄いターゲット ・スペクトルの全範囲の測定 2. IFMIF加速器構成材核種と重陽子反応による放射性核種生成 ・Li, C, Al, (Fe, Cu) ・厚いターゲット,薄いターゲット ・スタックターゲット法による励起関数の導出 ・7Be, (3H), , 24Na, 24Na
3.実験 1.東北大学サイクロトロン ・第五ターゲット室, ・ビームチョッパー ・ビームスウィンガー+飛行管室; 高いエネルギー分解能, S/N比,広いスペクトル範囲 2. スタックターゲットの利用 ・厚いターゲットと薄いターゲットの対する同時測定 ・中性子スペクトル,放射化の同時測定
INTRODUCTION(2) n+28Si (LA150)